
Acoustics

Intro to Fluid Mechanics

Let's begin with some simple fluid mechanics.   By fluids I mean liquids and gases – media that cannot maintain a shear force. In 
continuum mechanics we deal with tiny packets containing a huge number of molecules but small on the scale of the spatial disturbances 
we're interested in.   The fluid will be described by its density 𝜌, pressure p and the velocity �⃗� of a packet of fluid at the point 𝑟 and time t.  
First, we have conservation of mass, described in the same way we would conservation of charge, by an equation of continuity.   

𝜕𝜌
𝜕𝑡
+ ∇ ) 𝜌�⃗� = 0

In other words, the density at any point will change according to the divergence of mass flux 𝜌�⃗� .   To describe how �⃗� changes with time, 
we need Newton's second law, F = ma.  Remember that �⃗� is the fluid velocity defined at each point in space, just like temperature or 
pressure.  But Newton's law refers to an individual packet of fluid as it moves through space. 
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Suppose the packet moves from point 1 to point 2 along the dotted path.  The acceleration is given 
by change in its velocity for small ∆𝑥, ∆𝑦, ∆𝑧, ∆𝑡. For example, the acceleration in the x-direction    
is given by, 
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This expression with the gradient along with the explicit time derivative is called the convective derivative.  A similar expression holds for 
each velocity component.   Take a packet of volume ∆𝑉. This has a mass 𝜌∆𝑉 so Newton's law for the packet is given by, 

𝜌∆𝑉 �⃗� ) ∇ �⃗� +
𝜕�⃗�
𝜕𝑡 = �⃗�

where �⃗� is the force on the packet.  The force can come from from pressure, gravity and viscosity.   We're interested in sound waves for 
which pressure is the most important force. 



Pressure is force per unit area.  It acts normal to any surface.  Consider an 
infinitesimal cube of fluid in which the pressure varies from place to place.  
Concentrate on the two surfaces perpendicular to the x-axis, located at x and
x + ∆𝑥 .  The net force in the x direction will be the net pressure times the cross-

sectional area:

𝐹! = 𝑝 𝑥 − 𝑝 𝑥 + ∆𝑥 ∆𝑦∆𝑧 = −
𝜕𝑝
𝜕𝑥 ∆𝑥∆𝑦∆𝑧 = −

𝜕𝑝
𝜕𝑥 ∆𝑉

We can do the same calculation for the other 4 faces.  This leads to derivatives of 
the pressure in the y and z directions.   We arrive at the vector force on the 
volume,

�⃗� = −∇𝑝 ∆𝑉

𝑝 𝑥 + ∆𝑥𝑝 𝑥

Inserting this into our previous expression of Newton's law, 

𝜌∆𝑉 �⃗� ) ∇ �⃗� +
𝜕�⃗�
𝜕𝑡

= �⃗� = −∇𝑝 ∆𝑉

Dividing both sides by 𝜌∆𝑉 we obtain Euler's equation for a non-viscous fluid, 

�⃗� ) ∇ �⃗� +
𝜕�⃗�
𝜕𝑡 = −

∇𝑝
𝜌

For much of fluid mechanics – water flowing through pipes, for example, it is a very good approximation to assume the the fluid is 
incompressible, meaning that the density is a constant.   However, for sound waves that's not true.  The density definitely does change so 
we'll be in the regime of compressible fluid flow.  However, the good news is that except for very large amplitude sound waves, we can 
ignore the nasty �⃗� ) ∇ �⃗� term.   What about viscosity?  That will add a complicated term on the right hand side to Euler's equation.  And 
viscosity is vital to describe much of anything interesting for incompressible fluid flow – airplane wings, water flowing down pipes, 
turbulence, for example.   For sound, we can understand a great deal by first ignoring viscosity.  Its main effect will be to sap energy out of 
a sound wave.



Sound Waves

Sound is a disturbance that propagates through gases, liquids, solids and even a plasmas.  The figure below illustrates the situation 
for a sound a wave in air.    Imagine a loudspeaker subjected to a sinusoidal voltage at some frequency, say 1000 Hz.  The electrical signal 
moves the speaker membrane back and forth at 1000 Hz, which in turn  pushes on the air adjacent to it.   This motion of the speaker 
membrane creates regions of high and low pressure that propagate out from the speaker at speed cS .    An imaginary snapshot of the gas 
molecules (greatly exaggerated) would reveal a periodic arrangement of high and low density regions.   These successive wavefronts move a 
delicate membrane inside your ear whose vibrations eventually move tiny "cilia" back and forth, generating nerve impulses that are 
interpreted as sound by your brain.   

𝜆

Sound waves correspond to compressible fluid flow, as 
opposed to the flow of liquids through pipes and down rivers in 
which the fluid may be considered incompressible.  As with 
electromagnetic waves, the wavelength and frequency are 
simply related to the sound wave velocity,

𝑓 𝜆 = 𝑐!

where f is the frequency in Hertz and 𝜆 is the wavelength in 
meters.   Successive peaks in the air pressure are separated by 
𝜆. The sound velocity is a property of the medium.   For air at 
𝑇 = 25℃ ,  𝑐" = 764 𝑚𝑝ℎ ≈ ⁄300 𝑚 𝑠𝑒𝑐.   Our treatment is 
applicable to gases and liquids and follows the text Fluid 
Mechanics by Landau and Lifshitz.    https://physicsofscifi.blogspot.com/2012/07/star-trek-sound-in-outer-space-and-on.html

Call the ambient pressure p0 and the ambient density 𝜌# both of which we'll assume are constant everywhere.    A sound wave is a 
disturbance in both quantities that propagates.   Call these disturbances p' and 𝜌$ .   For most sound waves of interest  p' << p0 and 𝜌$ ≪
𝜌# .    There is also an associated fluid velocity �⃗�.   Think of a water wave at the beach.  If you stand in place the water move up and down 
with a local velocity �⃗� that depends on where you're standing at a given time.  �⃗� is not the speed of the wave, nor is it the velocity of any 
individual water molecule.  It's the local velocity of a small packet of water.   Similarly with a sound wave, there will be a fluid velocity �⃗�
that accompanies the disturbances in pressure and density.   Letting 𝜌 and 𝑝 be the total density and pressure of the fluid,  the necessary 
equations are continuity and Euler's equation:

𝜕𝜌
𝜕𝑡
+ ∇ ) 𝜌�⃗� = 0

𝜕�⃗�
𝜕𝑡
+ �⃗� ) ∇ �⃗� = −
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Sound waves are small disturbances so we can make the approximations,

𝑝 = 𝑝# + 𝑝$ 𝑝$ ≪ 𝑝# 𝜌 = 𝜌# + 𝜌$ 𝜌$ ≪ 𝜌#

Assume (to be shown later) that �⃗� is also small compared to both the wave velocity and  the molecular velocity.   Then terms involving products 
of �⃗�, 𝜌$ 𝑜𝑟 𝑝$ can be considered higher order and ignored.  The continuity equation and Euler equations can then be linearized:

𝜕𝜌′
𝜕𝑡

+ 𝜌#∇ ) �⃗� = 0
𝜕�⃗�
𝜕𝑡
+
1
𝜌#
∇𝑝$ = 0 𝑝$ ≪ 𝑝# 𝜌$ ≪ 𝜌#

We now have 2 equations with 3 unknowns (�⃗�, 𝜌$, 𝑝$) so another equation is needed; a relationship between the the 𝑝 and 𝜌.   For an ideal gas 
you might be tempted to use the ideal gas law  𝑝 = 𝜌𝑘%𝑇/𝑚 where m is the molecular mass.  However, that generally gives much too small a 
sound velocity.   The disturbances in sound waves usually oscillate too rapidly for the fluid to remain at a uniform temperature.   A much better 
approximation is to assume that pressure and density disturbances occur with no flow of heat or adiabatically, meaning that a given fluid 
packet expands and contracts at constant entropy S.   The pressure disturbance in the sound wave will therefore be written as,

𝑝 = 𝑝# + 𝑝$ ≈ 𝑝# +
𝜕𝑝
𝜕𝜌# "

𝜌$ → 𝑝$ =
𝜕𝑝
𝜕𝜌# "

𝜌$

The quantity &'
&(! "

is a property of the fluid that will be determined momentarily from thermodynamics.  Using the 3 equations we can now 

move on to find a wave equation.  Specialize to the case of a wave moving in the x-direction.  Sound waves in fluids are longitudinal, meaning 
that the fluid velocity is along the direction of wave propagation.  (Both longitudinal and transverse waves may propagate in solids but that will 
come later.)   Assume motion along the x direction so �⃗� = 𝑣! 𝑥, 𝑡 O𝑥 .   Eliminating 𝑝′ leaves two equations,

𝜕𝜌′
𝜕𝑡

+ 𝜌#
𝜕𝑣!
𝜕𝑥

= 0
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= 0

Taking the time derivative of the first equation and the space derivative of the second and setting   
"!#"
"$"%

= "!#"
"%"$

leaves a wave equation,
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A sound wave therefore travels with a phase velocity,  

𝑐) =
𝜕𝑝
𝜕𝜌# "

It's easy to see that all three quantities, density, pressure and fluid velocity, obey the same wave equation.  

Speed of sound in an ideal gas

Consider an ideal gas whose equation of state is given by 𝑝# = 𝑛𝑘%𝑇 = 𝜌#𝑘%𝑇/𝑚 where n is the density in molecules per cubic 
meter and m is the mass of one molecule.  Thermodynamics tells us that when an ideal gas undergoes a a change at constant entropy the 
following equation holds, 

𝑝#𝑉* = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝛾 =
𝐶+
𝐶,

where CP and CV are the heat capacities measured at constant pressure and constant volume, respectively.  For a simple monatomic gas like 
helium 𝛾 = 5/3 .  For diatomic gases like N2 or O2 , 𝛾 = 7/5 at room temperature.  Taking derivatives we have,

0 = 𝑑 𝑝#𝑉* = 𝑑𝑝 𝑉* + 𝑝#𝛾 𝑉*-. 𝑑𝑉 → 𝑑𝑝 = − 𝑝#𝛾
𝑑𝑉
𝑉

We need the change in pressure with respect to density, not volume.  To get that, consider a volume V containing N gas molecules.   Its 
density is given by   𝜌# = ⁄𝑚𝑛 = 𝑚𝑁 𝑉 .   Changing the volume by a small amount,

𝜌# + 𝑑𝜌# =
𝑚𝑁

𝑉 + 𝑑𝑉
≈ 𝜌# − 𝜌/

𝑑𝑉
𝑉

→ 𝑑𝜌# = −𝜌/
𝑑𝑉
𝑉

Eliminating ⁄𝑑𝑉 𝑉 from these two equations and using the ideal gas law, 𝑝# = ⁄𝜌#𝑘%𝑇 𝑚 we obtain, 

𝜕𝑝
𝜕𝜌# "

=
𝛾𝑘%𝑇
𝑚

= 𝑐)0

For sound waves in air ( 78% N2  and 21% O2 so 𝛾 = 7/5)  cS = 340 m/sec at T = 293 Kelvin. 



It's interesting to compare the sound velocity cS to the average molecular speed V in the gas.   This quantity can be estimated from the 
equipartition theorem of statistical mechanics, which says that the statistical average of any quadratic term in the energy is given by  

⁄𝐸 = 𝑘%𝑇 2 .    Applying this theorem to the kinetic energy of a molecule, there are 3 quadratic terms, 

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 =
1
2
𝑚 𝑉!0 + 𝑉10 + 𝑉20 = 3 ∗

𝑘%𝑇
2

→ 𝑉0 =
3𝑘%𝑇
𝑚

↔
𝛾𝑘%𝑇
𝑚

= 𝑐)0

Comparing 𝑉0 to 𝑐)0 , we see that they are comparable since 𝛾 = ⁄5 3 is between 1 and 2.  Next, let's see how the the magnitude of the fluid 
velocity �⃗� compares to 𝑐".

Decibels

We're all used to hearing about loudness in terms of decibels.   Remember that the pressure disturbance p' also obeys the wave equation 
so consider at a simple travelling wave solution,

𝑝′ = 𝑝′'345 𝑐𝑜𝑠 𝑘𝑥 − 𝜔𝑡

where ⁄𝜔 𝑘 = 𝑐" is the phase velocity of the wave.  The root mean-square of the pressure amplitude is defined as 𝑝67"$ = ⁄𝑝'345$ 2 .   The 
sound pressure in decibels (measured in dBSPL) is defined as,

𝑝′ 𝑑𝐵𝑆𝑃𝐿 = 20 𝑙𝑜𝑔.#
𝑝67"$ 𝑃𝑎𝑠𝑐𝑎𝑙𝑠

2 𝑥10-8

Atmospheric pressure at sea level is about 105 Pascals.  Sound waves, even very loud ones, involve far smaller pressures disturbances.   A 120 
dBSPL sound wave (right at the pain threshold for humans) has an RMS pressure of 𝑝67"$ = 109 𝑥 2 𝑥 10-8 = 20 𝑃𝑎𝑠𝑐𝑎𝑙𝑠 which is only 20/105 =  
0.0002 times atmospheric pressure.   This justifies our approximation that p' << p0 for any sound that we can bear to hear.

The next table shows pressure levels in decibels for various sounds.   The human ear can detect sounds over more than 14 orders of magnitude 
in intensity so a logarithmic scale appropriate.   On the other hand, shock waves that might come from a nearby explosion can have pressure 
amplitudes comparable to atmospheric pressure, close to 200 dB, which is far beyond the pain threshold.    

Sound waves can also be characterized by their intensity in Watts/m2.

𝐼 𝑑𝐵 = 10 𝑙𝑜𝑔.#
𝐼 ⁄𝑊 𝑚0

10-.0



On this scale and intensity of  10-12 W/m2   (0 dB) is at to the threshold of 
hearing for most people.  It corresponds to the eardrum moving less than 
the diameter of an atom.  

Assuming p' << p0  we can go now back and estimate the size of 
the fluid velocity 𝑣! .  Recall the linearized version of Euler's equation in 
one dimension, 

𝜕𝑣!
𝜕𝑡 +

1
𝜌#
𝜕𝑝′
𝜕𝑥 = 0

Again, assume sinusoidal solutions for the pressure and velocity,

𝑝$ = 𝑝$'345 𝑐𝑜𝑠 𝑘𝑥 − 𝜔𝑡 𝑣!= 𝑣!'345 𝑐𝑜𝑠 𝑘𝑥 − 𝜔𝑡

Plugging these into Euler's equation, using ⁄𝜔 𝑘 = 𝑐" and the ideal gas 
law, 𝑝# = 𝑛𝑘%𝑇 (valid for the equilibrium density) we have,

𝑣!'345 =
𝑝$'345
𝜌# 𝑐)

=
𝑝$'345
𝜌# 𝑐)0

𝑐) =
𝑝$'345

𝑚𝑛𝛾𝑘%𝑇𝑚
𝑐) =

𝑝$'345
𝛾𝑝#

𝑐) →
𝑣'345
𝑐)

=
𝑝$'345
𝛾𝑝#

≪ 1

The inequality holds because 𝛾 is of order 1-2 and we've just shown than the pressure disturbance 𝑝$'345 in a sound wave is tiny compared to 
the ambient pressure p0 .   The net result is that 𝑣! ≪ 𝑐) .   That's not true for shock waves but shock waves involve nonlinear solutions to the 
equations of fluid mechanics and are outside the scope of what we just derived.  Ordinary sound waves occur in the linear approximation.   

https://www.omnicalculator.com/physics/db



Acoustic impedance

The previous equation also brought out an important relationship between the fluid velocity and pressure amplitude in a sound wave,

𝑝$'345 = 𝜌# 𝑐) 𝑣!'345 = 𝑍) 𝑣!'345

𝑍) = 𝜌# 𝑐) is called the acoustic impedance of the medium.   In SI units, it has units of Pascal-sec/meter = Rayl .   Zs is particularly useful when 
examining sound waves as they travel from one medium into another, i.e., how much is reflected and how much is transmitted.  I've included 
a table showing the parameters for a variety of different materials.  Many of these are metals and plastics, both of which support longitudinal 
sound waves, although they do not obey the equations of fluid dynamics. 

https://www.researchgate.net/figure/Characteristic-specific-acoustic-impedances-of-polymer-materials-in-comparison-to-some_tbl1_349089661

Reflection and transmission

Suppose we have a sound wave normally incident on the boundary between two media with acoustic impedance Z1 and Z2
respectively.   Let's see how much sound is transmitted and how much is reflected.   There is one point before we go on.   If you go back to 
the Euler equation and plug in solutions for left-going waves, 𝑝$ = 𝑝$'345 𝑐𝑜𝑠 𝑘𝑥 + 𝜔𝑡 and 𝑣! = 𝑣!'345 𝑐𝑜𝑠 𝑘𝑥 + 𝜔𝑡 then the 
impedance is 𝑍) = − 𝜌# 𝑐) so there is an important  (-) sign.     Now, as with electromagnetic waves, apply boundary conditions. 



We'll use the notation pi, pr and pt for the pressure amplitudes of the incident, 
reflected and transmitted sound waves and similarly for the fluid velocity 
amplitudes.  Both the total pressure and total velocity must be continuous at the 
boundary.  Therefore,

𝑝: + 𝑝; = 𝑝< 𝑣: + 𝑣; = 𝑣<

Using acoustic impedances the first equation becomes, 

𝑍.𝑣: − 𝑍.𝑣; = 𝑍0𝑣<

Solving for the reflection coefficient we have, 

𝑅 ≡
𝑣;
𝑣:
=
𝑍. − 𝑍0
𝑍. + 𝑍0

vi , pi vr , pr

vt , pt

We are usually more interested in the transmission and reflection of the sound energy.  The full derivation is somewhat lengthy (see Landau 
and Lifshitz, Fluid Mechanics) but the result is easy to remember.   For a plane wave, the intensity 𝐼 = energy flux =  acoustic energy passing 
through a square meter per second,  is given by the product of the wave velocity and the energy density, as with electromagnetic waves,

𝐼 = 𝑐! 𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 𝑐!𝜌(𝑣) = 𝑍𝑣)

The coefficients of reflected and transmitted intensity are obtained by squaring R and using the conservation of energy,  

𝐼*
𝐼+
=

𝑍, − 𝑍)
𝑍, + 𝑍)

) 𝐼$
𝐼+
= 1 −

𝐼*
𝐼+
=

4 𝑍,𝑍)
𝑍, + 𝑍) )

A large mismatch in acoustic impedances implies lots of reflected energy and little energy transmitted.  This will be important when we 
discuss transducers for medical imaging. 



Generation of sound waves

Pretty much anything that moves through the air will generate 
sound. Predicting the precise form of the resulting wave from the 
specific shape of the vibrating object is very complicated.  As such, the 
design of musical instruments is as much an art as a science and 
outside the scope of these lectures and of my expertise.  As an 
example, consider a loudspeaker whose essential parts are shown in 
the figure.   

A coil of wire is attached to the back of the cone and inside 
the coil sits a permanent magnet.  A sinusoidal current passing 
through the coil generates a sinusoidal Lorentz force acting on the coil 
which moves the cone back and forth.   That movement generates 
oscillations of the density in the nearby air which then propagate away 
as sound waves.   Depending on the size and shape of the speaker it 
generates sound waves in the audio range of frequencies (10 Hz – 20 
kHz).   

https://www.electronics-tutorials.ws/io/io_8.html

Ultrasound

Sound with frequencies above the human audio range of 20 kHz is termed 
ultrasound.    The table shows that several different animals can detect sounds above 
100 kHz.  Bats, for example, navigate by emitting ultrasonic waves and then detecting 
the resulting echo from nearby objects.   Even though we cannot hear it, ultrasound 
has many uses.  We've all seen ultrasound images of a developing fetus.   In addition to 
medical technology ultrasound is used for cleaning fine parts and silicon wafers, range 
finding, testing weld joints and and promoting chemical reactions (sonochemistry).   

https://www.compadre.org/osp/EJSS/4489/274.htm



The lower figure shows the approximate frequency ranges used in various applications of ultrasound.  Ultrasonic cleaners 
operate in the 20 – 200 kHz range.  Sonochemistry operates up to a few MHz. Medical imaging is generally done with ultrasound in 
the 2-15 MHz range.   

https://www.engineersgarage.com/ultrasonic-uv-sensors-or-
ultrasound-sensors/

Attenuation of Sound

You'll notice that the above figure shows an upper limit for 
medical ultrasound of around 10– 15 MHz. As with light waves, 
higher resolution can be achieved with shorter wavelengths and 
therefore higher frequencies.  So why not operate at say 400 
MHz?  The problem is that sound waves loose energy as they 
travel along and that severely limits the range of operation for 
something like medical imaging. Sound attenuation is defined by 
the coefficient 𝛼 which describes how the intensity of the wave 
decreases as we move a distance x, 

𝐼 𝑥 = 𝐼 0 𝑒-.%

X

It's usually measured in decibels/meter so 10 decibels would correspond to a change of intensity by a factor of 10.  As we'll see, 
the attenuation generally increases rapidly with frequency.  To understand this we first need to discuss viscosity. 



Viscosity

To remind you about viscosity, imagine we have a fluid constrained between two infinite plates, one at z = 0 and one at z = d. 
Suppose the top plate moves along at uniform velocity V  in the x-direction, while the lower plate is stationary.   We'll assume that fluid 
immediately next to the plate moves at the same speed as the plate.   Then the local velocity of the fluid would vary with z as shown.  Call 
it 𝑣! 𝑧 .    The fluid velocity field has a shear.

z = d

𝑣! 𝑧

Fx

Focus on some plane, say z = d, shown by the blue line.  
Fluid below this plane exerts a force in the x-direction 
on fluid above this plane.   Consider just a square of 
area A in this plane.  We'll call this force on this area of 
fluid,

𝐹! = −𝜂
𝜕𝑣!
𝜕𝑧 𝐴

where 𝜂 is the viscosity.   Since ⁄𝜕𝑣! 𝜕𝑧 > 0 and 𝜂 is 
defined to be positive,  the (-) sign out front is required 
so the force acts in the negative x direction, as shown 
by the red arrow.   It's a drag or friction force.

To understand where viscosity comes from, refer to the figure below.   
Recall that for each molecule the total velocity is the sum of a very large 
thermal velocity and a much smaller velocity vx coming from the fluid flow.   
Molecule 1 starts out at  z = d-l .  It has a big upward thermal velocity and a 
tiny fluid velocity vx(d-l).   When it crosses the blue plane it delivers some x-
momentum mvx(d-l) to the top fluid.  Molecule 2 starts out at d+l with a big 
downward thermal velocity.  It crosses the boundary and delivers a slightly 
bigger x-momentum mvx(d+l) to the fluid below.   The top fluid is therefore 
losing x-momentum.   Since force is the change in momentum per second, 
there is negative-going force Fx on the top fluid.  

𝑣! 𝑧 = 𝑑 + 𝑙

𝑣! 𝑧 = 𝑑 − 𝑙 −𝑉=>3;?4@

𝑉=>3;?4@1

2



To get the viscosity coefficient, multiply the number of molecules per unit volume (n)  by 𝑉=>3;?4@ and by the change in x-momentum of 
the top fluid for each process like the one shown in the figure.  That gives the net x-force per unit area:  
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1
6
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1
3
𝑛𝑚𝑙 𝑉/01*534

𝜕𝑣%
𝜕𝑧

= −𝜂
𝜕𝑣%
𝜕𝑧

The 1/6 is there because on average 1/6 of the molecules have a thermal velocity in the +z direction.  l is the mean free path: how far, on 
average, a molecule travels before it collides with another one.  Viscosity is proportional to all these quantities.  We just found the force on 
the plate.  Viscosity adds a new force, in addition to pressure.   When we calculate the viscous force on a little volume of fluid we end up 
with the full equation for a viscous fluid,
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It's impossible to solve exactly except for a few special cases.  There is also another coefficient 𝜁 called second viscosity related to internal 
degrees of freedom in the material.   We'll focus on some easy-to-solve cases that are highly relevant to sound waves.

Viscous penetration depth

We know E&M that a high frequency wave can't fully penetrate a metal.  
The electric field inside the conductor drops exponentially,

𝐸 𝑥 = 𝐸 𝑥 = 0 𝑒- ⁄! B 𝛿 =
𝜌
𝜋𝜇𝑓

Something similar happens in viscous fluids and it illustrates why you can't 
propagate a transverse wave in a fluid.   Suppose we take a plate with a fluid 
adjacent to it and oscillate the plate up and down in the y-direction at frequency 
𝜔.  Fluids generally obey a no-slip condition at surfaces, meaning that the fluid 
velocity must match the surface velocity.  So at the surface, defined by x = 0, we 
have,

𝑣6 𝑥 = 0, 𝑡 = 𝑉78*93:1 = 𝑉( cos𝜔𝑡

x

𝑉)C;D4E3 = 𝑉# cos𝜔𝑡

𝛿;

fluid



The velocity obeys the fluid equation which thankfully simplifies to,

𝜕𝑣6
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=
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Since the motion is transverse to the direction of propagation, the continuity equation becomes,
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The density doesn't change with time and since the density variations 𝜌$ are proportional to the pressure variations p' , then p' = 0 also.  The 
equation of motion reduces to,
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Assume a transverse wave travelling to the right,

𝑣6 𝑥, 𝑡 = 𝑅𝑒 𝑣6 𝜔, 𝑘 𝑒+ =%->$

Plugging the complex exponential into the equation of motion, we can find the relation between 𝜔 and 𝑘 ,
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Applying the boundary condition at x = 0 we have, 
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The transverse wave dies off with a characteristic length 𝛿, , otherwise known as the viscous penetration depth,   
𝛿; =

2𝜂
𝜔𝜌(This demonstrates that we can't propagate transverse waves in a fluid.  That requires a solid. 



Sound attenuation in water

Okay, so transverse vibrations won't propagate in fluids but 
longitudinal sound waves do and they are attenuated for two major 
reasons (1) viscosity (2) internal degrees of freedom that are disturbed by 
the sound wave. The figure on the right illustrates the situation.   
Remember that the attenuation is defined by,

𝐼 𝑥 = 𝐼 0 𝑒-.%

𝛼 is the length scale over which the sound wave loses energy and is 
damped out, somewhat like the viscous penetration depth.  The plot shows 
𝛼 for pure water and sea water with two different compounds added.
At low frequencies all three curves show a straight line.  It's a log-log plot in 
which 𝛼 increases by 100 for every factor of 10 in frequency f so the 
frequency dependence is quadratic,

𝛼 = 𝑎𝑓)

a is a constant depending on the material and the temperature.  For pure 
water the f 2 dependence extends over many decades in frequency.   That 
means low frequency sound waves travel much further in water than high 
frequency sound waves.   That has implications for everything from 
submarines to whales.  The bumps in the curves for water + Mg(SO)4 and 
B(OH)3 are another matter which we will take up shortly.  

Sound attenuation by viscosity

As before, we'll assume the fluid velocity 𝑣! varies only along the  
x-direction.   The equation of motion with viscosity is now,
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=
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J. Lyman, R.H. Fleming, Composition of sea water. J. Mar. Res. 3, 134–
146 (1940), from S.L. , from Garrett, S.L. (2020). Attenuation of Sound. 
In: Understanding Acoustics. Graduate Texts in Physics. Springer, 
Cham. https://doi.org/10.1007/978-3-030-44787-8_14



The continuity equation stays the same,

𝜕𝜌′
𝜕𝑡

+ 𝜌(
𝜕𝑣%
𝜕𝑥

= 0

We can also use the relationship between changes in density and pressure,

𝑝< = 𝑐!)𝜌′

These are linear equations so we can still assume the usual complex exponential solutions, 

𝑝<, 𝑣% , 𝜌< ~ 𝑒+ =%->$

Plug these exponential solutions into the equation of motion and the continuity equation.  We'll assume the part due to viscosity represents 
a small correction to the relationship between frequency and wavenumber.  Doing that leads to,
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This means that the pressure disturbance in the wave travels as a sound wave but with attenuation, 

𝑝< ~ 𝑐𝑜𝑠 𝑘B𝑥 − 𝜔𝑡 𝑒-=$%

The attenuation constant 𝛼 describes how the intensity changes with x.  But the intensity is proportional to the square of the pressure p' so

𝐼 ∝ 𝑝< ) ∝ 𝑒-)=$% = 𝑒-.% → 𝛼;+7:D7+$6 = 2𝑘C =
𝜂𝑓)

4𝜋)𝑐!A𝜌(

The sound attenuation constant due to viscosity does indeed vary at the square of the frequency, as measured.   

In air, we must also include thermal relaxation!  See S.L. Garrett, Acoustics.  



Relaxational sound attenuation

What about the bumps and the increased attenuation in the curves with MgSO4 and B(OH)3 ?  In sea water there are two important 
chemical reactions taking place,

𝑀𝑔𝑆𝑂! + 𝐻"𝑂 ↔ 𝑀𝑔#$ + 𝑆𝑂!"% + 𝐻"𝑂

𝐵 𝑂𝐻 # + 𝑂𝐻 %& ↔ 𝐵 𝑂𝐻 !
%&

Attenuation occurs because the sound wave comes along and temporarily disturbs the equilibrium of each chemical reaction.  Once
disturbed, the equilibrium takes some characteristic time 𝜏 to return to equilibrium.   That leads to a widely observed type of frequency 
dependence.    To illustrate I'll use an example familiar from E&M.  Consider a collection of electric dipoles subjected to a sudden change in 
the electric field E at time t = 0.  

𝐸 = 𝐸( 𝑃 = 𝜖(𝜒(𝐸(𝐸 = 0 𝑃 = 0

P(t)

𝑃 𝑡 = ∞

Before we apply the field the polarization P = 0.  Now apply a step function electric field E0.   It takes some time for the dipoles to reach 
their new equilibrium.  In the simplest case that's described by a single time constant 𝜏 ∶

𝑑𝑃
𝑑𝑡

=
𝑃 𝑡 = ∞ − 𝑃

𝜏
→ 𝑃 𝑡 = 𝑃 𝑡 = ∞ 1 − 𝑒-$/F 𝑃 𝑡 = ∞ = 𝜖(𝜒(𝐸(

Here 𝜒' is the permittivity in equilibrium after the electric field has been on for a long time.  P(t) builds up just like the charge in an RC 
circuit subject to a step function in voltage.  In that case the time constant  𝜏 = 𝑅𝐶 .



Instead of a step function apply a periodic electric field at angular frequency 𝜔 and find the periodic polarization.   As usual, represent 
periodic functions by, 

𝑃 𝑡 = 𝑅𝑒 𝑃 𝜔 𝑒-+>$ 𝐸 𝑡 = 𝑅𝑒 𝐸( 𝑒-+>$

Plugging the complex exponentials into the previous differential equation we get, 

𝑃 𝜔 =
𝜖(𝜒( 𝐸 𝜔
1 − 𝑖𝜔𝜏

= 𝜖( 𝜒B 𝜔 + 𝑖𝜒C 𝜔 𝐸(

The permittivity now has a real and an imaginary part, both of which depend on frequency,

𝜒B 𝜔 =
𝜒(

1 + 𝜔𝜏 ) 𝜒C 𝜔 =
𝜒(𝜔𝜏

1 + 𝜔𝜏 )

Once we have the permittivity 𝜒 then we have the dielectric constant 𝜖 and the index of refraction n ,

𝜖 = 𝜖( 1 + 𝜒 𝑛 = ⁄𝜖 𝜖( = 1 + 𝜒B + 𝑖𝜒C

To find the attenuation assume we need the relationship between frequency and wavenumber k.  Assume 𝜒 ≪ 1,
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From this you can see that a wave travelling through a dielectric like this would be attenuated:

𝐸 𝑥, 𝑡 = 𝑅𝑒 𝐸(𝑒+ =%->$ = 𝐸( cos 𝑘B𝑥 − 𝜔𝑡 𝑒-=$ %

The phase velocity and the attenuation constant of the wave now depend on the real and imaginary parts of the permittivity.  Again, the 
intensity is proportional to the square of the field E so its attenuation constant is twice that of the field: 
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This kind of frequency dependence is characteristic of many 
relaxational processes.   When 𝜔𝜏 ≪ 1 the attenuation increases as 
𝜔".  When 𝜔𝜏 ≈ 1 it stops increasing and flattens off.   

Returning to the case of sound waves, if there is some process 
like a chemical reaction going it, it takes some time 𝜏 to relax back to 
equilibrium.   This leads to a time-dependent relationship between 
pressure and density, similar to the relationship between P and E. 
Relaxational attenuation will occur.  In sea water, the B(OH)3 reaction 
has a relaxation time of about 𝜏 ≈ 10%! sec .   The sound attenuation 
stops increasing near 𝜔𝜏 ≈ 1 which corresponds to a sound frequency 
of 1.6 kHz, which you can see on the log-log plot.    For the Mg(SO)4
reaction the time constant is about 10-6 sec.  The 𝜔𝜏 ≈ 1 condition 
occurs at a frequency of about 130 kHz, which you can also see on the 
plot. 

There are similar attenuation features as sound passes through 
a diatomic gas like N2  .    There will be vibrational states of the 
molecule whose equilibrium occupations will be disturbed by a sound 
wave.    Restoring the equilibrium occupation takes some time, again 
leading to attenuation with the form,

𝛼*143% =
𝐴𝑓)

1 + 2𝜋𝑓𝜏 )

J. Lyman, R.H. Fleming, Composition of sea water. J. Mar. Res. 3, 134–
146 (1940), from S.L. , from Garrett, S.L. (2020). Attenuation of Sound. 
In: Understanding Acoustics. Graduate Texts in Physics. Springer, 
Cham. https://doi.org/10.1007/978-3-030-44787-8_14



https://www.circuitbread.com/ee-faq/what-is-piezoelectric-effect

No net dipole moment

Under tension, the centroid of (+) charge 
moves up while that of (-) charge moves 
down.   A net dipole moment is created 
pointing up.  This leaves a net (+) charge 
on the top surface and a net (-) charge on 
the bottom surface. 

Under compression, the centroid of (+) 
charge moves down while the centroid of 
(-) charge moves up.   A net dipole 
moment is created pointing down.  This 
leaves a net (-) charge on top surface and 
net (+) charge on the bottom surface. 

Piezoelectrics

The most widely used device for generating ultrasound is the piezoelectric solid - a material that changes size in response to an 
electric field.  Piezoelectricity requires a special arrangement of atoms in the unit cell of the crystal.   Quartz (SiO2) is probably the best-
known piezoelectric, though not the most efficient.  The figure shows how tension and compression on a piece of quartz leads to an 
electric dipole moment (blue arrow) within the unit cell.  In a macroscopic crystal of quartz, many unit cells are stacked on top of each 
other so the net result is a buildup of equal and opposite charge on the opposing crystal surfaces.  The resulting electric field results in a 
detectable voltage between the crystal faces.   The generation of ultrasound employs the inverse effect in which the application of a 
voltage between the two surfaces of the crystal causes it to shrink or expand.   By applying a time-varying voltage the crystal can be 
made to vibrate at a particular frequency and generate sound waves.



Transducers

While quartz crystals are widely used in electronic circuits, lead zirconate, commonly referred to as PZT ( chemical formula 
Pb[ZrxTi1-x]O3 (0 ≤ x ≤ 1) ) is the material of choice for ultrasonic transducers.  That's because PZT expands and contracts much more than 
quartz for the same applied electric field.   The figure below shows a very simple ultrasonic transducer.   The two electrodes are 
electrically connected to the opposite faces of the piezoelectric material.   Applying a voltage between them generates vibrations in the 
piezo which in turn generate ultrasonic waves in the medium of interest, similar to a loudspeaker.   There is usually some kind of acoustic 
impedance matching layer on top of the piezo to maximize the amount of sound that is transmitted into the medium.   Wavefronts for an 
outgoing sound wave are shown in blue.   These waves go out, strike some surface and are reflected back.   The resulting echoes return 
to the transducer, vibrate the piezo material and generate a voltage between the electrodes that is then sent to the electronics.  You can 
buy one for a few dollars for simple tasks like range finding.  The transducers used for medical imaging are much more sophisticated but 
it's the same basic idea.

Electrodes

Sound waves
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MODEL: CUSA-T80-12-2600-TH | DESCRIPTION: ULTRASONIC SENSOR

cuidevices.com

FEATURES
• aluminium can
• open type
• transmitter
• SPL 115 dB
• detectable range 12 meters

SPECIFICATIONS
parameter conditions/description min typ max units

type transmitter

operating voltage at 25 kHz 180 Vp-p

frequency 24 25 26 kHz

sound pressure level at 10 V, 30 cm, sine wave 115 dB

directivity 80 degree

capacitance at 1 kHz 2,080 2,600 3,120 pF

detectable range 0.2 12 m

dimensions Ø16.0 x 12.0 mm

material aluminum

terminal pins (iron with tin plating)

weight 2.31 g

operating temperature -30 85 °C

RoHS yes

SOLDERABILITY
parameter conditions/description min typ max units

wave soldering 250 °C
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https://electronics.stackexchange.com
/questions/426195/polarity-of-
ultrasonic-sensor



Ultrasonic cleaning and cavitation

Ultrasound is used to clean everything from jewelry to silicon wafers.   The actual cleaning is not done by the sound wave itself but 
through a process called cavitation.    The object to be cleaned is placed in a bucket of liquid.   PZT transducers generate large amplitude 
ultrasonic waves in the liquid at a frequency of about 40 kHz.   A sound wave is a periodic string of high pressure and low pressure regions.   
In the low pressure regions it's thermodynamically favorable for the liquid to transform into a gas bubble or cavity, thus the name 
cavitation.    This newly formed bubble then periodically expands and contracts and grows as shown.   Eventually it reaches a critical size 
and implodes, generating very high temperatures and sending out shock waves.  These shock waves dislodge the dirt  from the piece to be 
cleaned.  Unwanted cavitation can damage surfaces and ultimately destroy big things like ship propellers.    

https://www.researchgate.net/publication/322552455_Sustainable
_and_energy_efficient_leaching_of_tungsten_W_by_ultrasound_co
ntrolled_cavitation/figures?lo=1



Quartz crystal resonators

Electronic instruments that require a "clock" signal whose frequency is extremely stable use piezoelectric quartz crystals like the 
one shown below.  There is no significant sound wave radiated away.  Instead, the sound forms a standing wave at a sharply defined 
frequency that depends on the crystal dimensions.   The most useful sound waves for this application are transverse waves that 
propagate between the top and bottom faces.   The crystals are cut and polished so a sinusoidal voltage applied between the electrodes 
generates, via the piezoelectric effect, a back and forth shear displacement of the quartz.   Quartz crystals for electronic instrumentation 
typically resonate in the 5 - 100 MHz frequency range. 

V(t)

Shear-displacement of quartz crystal (yellow) in 
response to oscillating applied voltage.  The 
material displacement is horizontal, in the direction 
of the blue arrow.  The direction of sound wave 
propagation is vertical, between the top and bottom 
plate. 

quartz

Electrodes

The next figure shows two different standing wave patterns within a quartz crystal.   The wave labelled f1 is the fundamental and 
corresponds to a sound wave in which the thickness d of the crystal corresponds to ½ wavelength.   The pattern labelled f3 corresponds to a 
harmonic in which d = 3/2 wavelengths.  The frequencies are given by,

𝑓& =
𝑐(
𝜆 =

𝑐(
2𝑑 𝑓#=

𝑐(
𝜆 =

𝑐(
⁄2𝑑 3 = 3𝑓& 𝑐( = 𝑠𝑜𝑢𝑛𝑑 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑞𝑢𝑎𝑟𝑡𝑧 ≈ 5000 ⁄𝑚 𝑠𝑒𝑐



The electromechanical response of a quartz crystal resonator can be measured by a network analyzer.    This instrument applies a 
sinusoidal voltage between the top and bottom faces of the crystal, generating standing sound waves via the piezoelectric effect.   The 
network analyzer then measures the sinusoidal current that flows in response.   For most frequencies the crystal just acts like an ordinary 
capacitor.  But when the frequency is very close to f1 (or f3 ) the crystal responds like any resonant device.  Standing sound waves build up 
and lead to a very sharp change in the current, as measured by the quantities G and B which depend strongly on frequency.   The relation 
between applied voltage and current is given by,

𝑉 𝑡 = cos𝜔𝑡 𝐼 𝑡 = 𝐺 𝜔 cos𝜔𝑡 − 𝐵 𝜔 sin𝜔𝑡

The sharpness of any resonance is measured by the quality factor Q = fr /FWHM (full width at half maximum).   For the resonance shown in 
the figure Q is about 6000.   (For comparison, a typical inductor-capacitor resonator might have a Q of 50.)

d https://qcm-sensors.com/publications/the-principles-of-qcm-i/
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Quartz crystal oscillators

Recall our previous discussion of amplifiers and feedback.  If the 
amplifier gain and feedback fraction satisfy the Barkhausen criterion, 

AVβ = −1

then the circuit will oscillate.   The circuit on the lower right uses a quartz 
crystal and two capacitors as its feedback network.  The extremely sharp 
resonance of the quartz crystal determines the oscillation frequency.   
The quartz is cut in an orientation so that its dimensions don't change 
much with temperature, making the oscillation frequency very stable.  
Even a simple circuit like this will maintain a frequency of a few MHz to 
within ± 1 Hz or better despite typical room temperature variations.   For 
higher stability the crystal is enclosed in a temperature-controlled box.  
This approach can lower the drift by several orders of magnitude.    
Virtually every piece of modern electronics contains quartz crystal 
oscillators like this.

Quartz crystal



Medical Ultrasound

The basic scheme of ultrasonic imaging involves the generation of ultrasonic waves from a transducer on the skin, letting these waves 
penetrate the body, bounce off parts of interest, capture the reflected waves and turn it all into an image.  As we saw earlier, the reflection 
coefficient for a sound wave going from medium 1 into medium 2 is proportional to the mismatch of acoustic impedance Z2 – Z1.   The more 
acoustic mismatch the better the image contrast between, for example, muscle and bone.  The table shows the acoustic impedance for various 
body materials. 

https://www.livescience.com/32071-history-of-fetal-ultrasound.html

Why use ultrasound as opposed to lower frequency sound waves?  If you recall from E&M, image resolution is ultimately limited by
diffraction so the minimum discernable spot size is close to the wavelength so the higher the frequency, the better the image resolution. For 
example, a 3 MHz sound wave passing through water, which constitutes much of the body, has a wavelength of about 0.5 mm so that sets 
the approximate resolution.  However, there is a tradeoff.  As the frequency rises, sound waves are more rapidly attenuated as they pass 
through the body and attenuation rapidly degrades the signal.   As a result, medical ultrasound is performed in the 1-20 MHz frequency 
range.   Ultrasound is now used not only for imaging but also therapeutically.   Since sound waves can be focused with millimeter resolution 
they can be used, somewhat like an ultrasonic cleaner, to physically change tumors and other biological features.    

https://www.google.com/search?q=acoustic+impedance&tbm=isch&sa=
X&ved=2ahUKEwjhxbLp04v_AhXcm4kEHTcsDpgQ0pQJegQIDRAB&biw=1
503&bih=961&dpr=2#imgrc=wuR672JYwoMZ0M



The requirements on the transducer for medical ultrasound are much more exacting than for ultrasonic cleaning.   First, it's important to 
maximize the transmission of the sound as it moves from the solid transducer into the body and then back out again.   Going back to acoustic 
impedances, recall that the energy transmission coefficient is given by, 

𝐼)*+,(-.))/0
𝐼.,1.0/,)

=
4 𝑍&𝑍"
𝑍& + 𝑍" "

If, say Z1 = 5 Z2 (e.g., sound going from the PZT transducer into water) then this ratio is 0.44 so more than half the sound energy available from 
the transducer never makes it into the body.   Using a result from transmission line theory (relevant to both electromagnetic and sound waves) 
we can make the energy transfer 100% efficient by inserting an impedance matching layer.   This layer must be made of a material whose 
acoustic impedance is the geometric mean of Z1 and Z2 ,

𝑍-+)12 = 𝑍&𝑍"

In addition, the thickness of the matching layer must be one quarter of the sound wavelength corresponding to the matching material,

𝐿-+)12 =
𝜆-+)12
4

=
𝑐( -+)12
4 𝑓

The overall transducer is shown below with the PZT, the matching layer and some backing material.  That's generally some kind of composite 
whose acoustic impedance is close to the PZT but which rapidly attenuates sound waves.   The aim is to keep the PZT transducer from 
"ringing" too long after it's excited.   Unlike the situation with quartz crystals discussed previously, we don't want extremely high Q 
transducers for transducers.    High Q implies excessive ringing after the electrical excitation and that makes it difficult to both shape the 
outgoing bursts of sound and to process the incoming echoes that are used to form the image.  

https://quizlet.com/599300794/chapter-8-
transducers-flash-cards/



Medical transducers are now made from a large array of PZT transducers, each of which can generate outgoing sound waves and then 
detect the echoes that come back.  It's worth recalling how an ordinary lens focuses light.   Suppose the left side of the lens is illuminated by an 
incident beam.   Before reaching the lens the incoming light wave has a constant phase along a wavefront perpendicular to the beam.  Now look 
at light moving along path A.   It passes through glass whose thickness is 𝑙3 and then travels an additional distance LA to reach the focal point.  
The total phase change is given by,

𝜙3 = 𝜙45+((3 + 𝜙+.*3 = 𝑘45+((𝑙3 + 𝑘+.*𝐿3 =
𝜔

𝑐45+((
𝑙3 +

𝜔
𝑐+.*

𝐿3

Focal point

path A

path B

𝑙3 𝐿3

A wave moving along path B will have its phase changed but now 𝑙6 is larger and 𝐿6 is smaller than for path A.  So along path B the 
wave picks up a phase, 

𝜙6 =
𝜔

𝑐45+((
𝑙6 +

𝜔
𝑐+.*

𝐿6

For the lens to focus, the phase must be the same for all paths to the focal point.    In a conventional lens this problem is solved by 
grinding the lens to the correct curvature.   That sort of thing can be done with sound waves but a much more versatile way to focus 
sound waves is to construct the lens as an array of many small PZT transducers.  Then each transducer can be separately excited 
electronically.  To ensure that all the sound waves have the same phase, the transducers are excited at different times.   In effect, the 
phase shift produced by a conventional lens is replaced by a phase shift in the radio frequency signal sent to excite the piezoelectric 
element.  Since the frequencies are very low (a few MHz) compared to optical frequencies (1014 Hz) , this kind of precise electronic 
control is possible.  This approach is generally termed phased array beam manipulation.   It's also widely used for electromagnetic waves 
in radar.   The overall scheme is shown on the next slide.



Figure 6. A focused acoustic transmission is produced by properly delayed, high-voltage transmit pulses.

Ultrasound Receiver Basics
Acoustic energy reflected from acoustic impedance discontinuities in the body are received by the
transducer and routed to separate receive channels in the system. These receive channels amplify and
then digitize the signals from each transducer element, as shown in Figure 7. Using a calculated delay
profile, the digitized signals are delayed and summed in the ultrasound system's digital beamformer in
order to generate a focused, receive beamformed signal. The resulting digital signal is used to generate
2D and PW/color-flow Doppler information.
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Tutorial 4038, Maxim Integrated Circuits

Transmitting the focused beam

The top figure shows how voltage pulses 
with differing delay times will excite the 
array of transducer elements to generate a 
focused beam of ultrasound.   And by 
changing the pattern of delay times the 
focal point can be moved to different 
points in the body. 

Receiving the echo

Sound bouncing off an object located at 
the focal point now returns to each 
transducer.  The received sound 
disturbance from each transducer 
generates an electrical impulse that is (1) 
amplified (LNA – low noise amplifier) (2) 
has its amplitude adjusted for loss of 
energy as it passes through the body (VGS) 
(3) filtered to keep out unwanted signals 
and (4) digitized in an analog to digital 
converter (ADC).  Since the reflected wave 
from the focal point arrives at each 
transducer at a different time, the digitized 
signals can be suitably corrected to all 
arrive at the same time, just as a lens 
would do.   Next, this focal point must be 
scanned over the region of interest.



https://www.semanticscholar.org/paper/High-intensity-
ultrasound-phased-array-for-surgical-Tan-
Chu/2d2f8e3140f7189774f4f2d8263da223943aa2c4

Phased array of ultrasonic transducers

In order to form a complete image, the reflected sound 
intensity must be recorded at each point in the body region of 
interest.   That's done by varying the time delays to move the focus 
around electronically.  For example, to focus the beam in the bottom 
picture, the transducer at A would need to be excited earlier than 
the transducer at B.  These same delays would then be used to 
correct the sound wave reflected from the new focal point.  

A

B
New focal
point

focal
point

https://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5022373&blobtype=pdf

The figure shows one type of modern 
ultrasound transducer array.  The individual 
elements are often arrayed on a more convex 
surface with a layer of varying thickness that 
acts like an acoustic "lens".  These features may 
optimize the ability of the device to focus signals 
from the transducer array. 

The ability to digitize the returning echo  
signals opens up other imaging possibilities.  For 
example, the returning sound wave may be 
Doppler-shifted if it reflects off a region of 
flowing blood.  That Doppler shift will show up 
as a shift in frequency of the reflected wave 
relative to the transmitted wave. 



Stress and Strain

To discuss sound waves in solids we need to talk about the relationship between force and displacement.  Consider a 
rectangular block of material that is L long, W wide and H tall.  Now apply a force uniform force F perpendicular to the end faces.  The 
resulting deformation, greatly exaggerated, is shown on the right. 

When we talk about materials in the elastic limit, we mean that the material obeys Hookes's law : the deformation is proportional to 
the force per unit area.   Like a spring, when we squeeze an elastic body and then release the pressure the body returns to its original 
shape.  For elastic bodies, Hooke's law takes the form,   

𝑆𝑡𝑟𝑒𝑠𝑠 =
𝐹𝑜𝑟𝑐𝑒
𝐴𝑟𝑒𝑎 =

𝐹
𝑊𝐻 = 𝑌-

∆𝐿
𝐿 = 𝑌- ) 𝑆𝑡𝑟𝑎𝑖𝑛

The quantity on the left is called the stress and the fractional deformation ⁄∆𝐿 𝐿 is called the strain.   Why the fractional deformation  
⁄∆𝐿 𝐿 ?    Think about applying the same forces to a block whose initial length is 2L.  Then ∆𝐿 will be be twice as large but ⁄∆𝐿 𝐿

remains the same.    The quantity Ym is called the Young's modulus.   It's like a spring constant and is different for every material.  To 
get the signs correct, note that the force on each end acts inward so �⃗� ) O𝑛 < 0 on each end where O𝑛 is the unit normal vector to the 
surface.  The negative sign for the stress implies a negative sign for the strain so ⁄∆𝐿 𝐿 is negative.  

Squeezing along the L direction causes the material to expand along the W and H directions.   That's described by a second 
material-specific constant known as the Poisson ratio  𝜎, defined by, 

∆𝑊
𝑊 =

∆𝐻
𝐻 = −𝜎

∆𝐿
𝐿

H

W

Force Force

𝐿 + ∆𝐿
𝐿

𝑊 + ∆𝑊

𝐻 + ∆𝐻

O𝑛O𝑛



For isotropic materials like steel whose properties don't depend on direction 𝑌- and 𝜎 are all that's needed to characterize the 
elastic properties.   For a single crystal we would need more parameters.   

In an elastic material the response (the strain) is linearly proportional to the force per unit area (the stress).   Linearity implies that 
superposition can be used to solve problems in elasticity, as in electricity and magnetism.  For example, imagine that we apply a uniform 
pressure P on all 6 sides of the block by letting it fall to the bottom of a lake.   We'll leave it as a homework problem to show, using
superposition, that the fractional change in volume is given by, 

∆𝑉
𝑉 ≈

∆𝑊
𝑊 +

∆𝐻
𝐻 +

∆𝐿
𝐿 = −

3 1 − 2𝜎
𝑌-

𝑃 = −
𝑃
𝐾

where K is called the bulk modulus.  This equation also shows why the Poisson ratio 𝜎 <  ½.  If the material had 𝜎 > ½ then the block would 
expand under pressure and it would be possible to extract work from it.  There would be no stable equilibrium situation.   

In addition to compressing and expanding, solids may undergo shearing motion.  Take the same block and glue it to the floor.  
Assume the top and bottom faces have area A.   Now apply a sideways force per unit area = F/A.  The block will distort in what is termed a 
pure shearing motion.  Superposition can be used to show that the angle of distortion 𝜃 is given by, 

F/A

𝜃

𝜃 = 2
1 + 𝜎
𝑌-

𝐹
𝐴 =

1
𝜇
𝐹
𝐴

The quantity 𝜇 is called the shear modulus.  Sound waves in solids may 
involve both shearing and compressional motions.  To describe both it is 
useful to introduce another elastic constant 𝜆 (not to be confused with 
the wavelength!).   These two new quantities are called the Lame 
constants and are related to the Young's modulus and Poisson ratio,

𝜇 =
𝑌-

2 1 + 𝜎
𝜆 =

𝜎 𝑌-
1 + 𝜎 1 − 2𝜎



Local displacement field

For wave propagation through solids we'll focus on the local displacement 𝑢 𝑟, 𝑡 of a tiny piece of solid from its equilibrium position 𝑟. 

Consider a piece of the solid whose corners are located at equilibrium positions 𝑟&, 𝑟", 𝑟#, 𝑟! . Now apply some stress to the solid so that it 
distorts.   The corners now move to new positions labelled 𝑟& + 𝑢 𝑟& , 𝑟" + 𝑢 𝑟" , etc.    𝑢 𝑟, 𝑡 is the local displacement and it depends on 
space and time.  However 𝑟 does not depend on time.   It's just a label for different equilibrium locations in the solid. 

𝑟H

𝑟)

𝑟A

𝑟,
𝑟, + 𝑢 𝑟,

𝑟) + 𝑢 𝑟)

𝑟H + 𝑢 𝑟H

𝑟A + 𝑢 𝑟)

To connect with what we previously said about Hooke's law, again 
consider the block of height H, length L and width W.  Imagine it rests on 
an immovable table.  Now exert a force per unit area Fz/A where Fz = -F
and the area A = LW.  The z-displacement of the top of the block is 
𝑢7 𝑧 = 𝐻 is given by, 

𝑢7 𝑧 = 𝐻 = 𝑌-𝐻 𝐹7/𝐴

𝑢7 𝑧 = 𝐻
𝐻

= 𝑌- −𝐹/𝐴 𝑢I

𝑢%

H

L

F/A

This is the just the fractional change in dimension introduced earlier, but 
in the language of local displacement 𝑢7 .  𝑢7 = 0 at z = 0 (the table top)  
and it varies linearly with z.  This is called a uniform strain.  Therefore the 
left side can be written as,

𝜕𝑢7
𝜕𝑧 = 𝑌- 𝐹7/𝐴



Sound waves in solids

Assuming the solid is elastic and isotropic, focus on the local displacement from equilibrium 𝑢 𝑟, 𝑡 .  It requires some mathematics to 
prove, but the displacement field obeys the equation of motion,

𝜚
𝜕)𝑢
𝜕𝑡)

= 𝜆 + 𝜇 ∇ ∇ E 𝑢 + 𝜇∇) 𝑢

𝜌 is the density of the material (kg/m3) and 𝜆, 𝜇 are the two Lame constants.  This looks somewhat like a wave equation in three dimensions 
but with a complicated middle term.   Since it is linear the solutions can be written in the wavelike form,

𝑢 𝑟, 𝑡 = 𝑅𝑒 𝑢= 𝑒+(=K*⃗->$)

All the space and time dependence is now contained in the exponential factor where 𝑘 is the wavevector.  The full solution can be written as 
the sum of a longitudinal displacement field 𝑢8 (parallel to 𝑘 ) and and transverse displacement field 𝑢9 (perpendicular to 𝑘.)   

𝑢 = 𝑢! + 𝑢G = 𝑅𝑒 𝑢=
G 𝑒+(=K*⃗->$)+ 𝑢=

! 𝑒+(=K*⃗->$) 𝑢=
G ∥ 𝑘 𝑢=

! ⊥ 𝑘

Plugging the expressions 𝑢=
G 𝑒+(=K*⃗->$) and 𝑢=

! 𝑒+(=K*⃗->$) separately into the wave equation and using some vector calculus it is 
straightforward to show that the longitudinal waves have a phase velocity, 

𝑐G= ⁄𝜆 + 2𝜇 𝜚 𝑃 − 𝑤𝑎𝑣𝑒 (𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙)

while the transverse waves have a smaller phase velocity, given by,

𝑐! = ⁄𝜇 𝜚 𝑆 − 𝑤𝑎𝑣𝑒 (𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒)

Sound velocities in solids are typically  5-6 x 103 meters/sec, which is much higher than in liquids.  Recall that in water, the sound velocity is 
about 1500 m/sec.  



The figure below shows the compressions and expansions that occur in a longitudinal sound wave.   In seismology these are called P-
waves or principal waves.

https://www.ux1.eiu.edu/~cfjps/1300/earthquake.html

Direction of propagation

The transverse waves have displacement perpendicular to the direction of propagation, as shown below.  Seismologists call these S-waves 
because they involve a shearing motion.   Our analysis is for an isotropic solid whose elastic properties are the same in all directions.  In that 
case there is only one shear-wave velocity.   However, crystals are not always isotropic, in which case the shear wave velocity depends on the 
direction of the shear displacement vector. 

https://www.ux1.eiu.edu/~cfjps/1300/earthquake
.html

Direction of propagation

Longitudinal (P) wave

Shear (S) wave



Sound waves also obey Snell's law.   For fluids the derivation goes exactly the 
same way as it does for electromagnetic waves.  Let the incident, reflected and 
transmitted waves vary as cos 𝜔𝑡 − 𝑘. ) 𝑟 , cos 𝜔𝑡 − 𝑘* ) 𝑟 and cos 𝜔𝑡 − 𝑘) ) 𝑟
respectively.  The three wavevectors are shown.  Since our equations are all linear, no 
new frequencies are generated so 𝜔 is the same for all three waves.   The three waves 
must be in phase at all times along the boundary between the two media, defined as 
the plane z = 0.   If 𝑟 is any vector in the plane z = 0 this implies that 𝑘. ) 𝑟 = 𝑘* ) 𝑟 =
𝑘) ) 𝑟.  Trigonometry then implies that 𝜃. = 𝜃* and 𝑘. 𝑠𝑖𝑛𝜃. = 𝑘* sin 𝜃) .  The 
wavenumber is related to the speed of sound through 𝑘 = ⁄𝜔 𝑐 so we arrive at Snell's 
law,
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In solids, this picture is complicated by the presence of both P and S 
waves.  Consider the same picture where the solid arrows correspond to P 
waves and the dashed arrows to S waves.   An incoming P wave strikes the 
boundary and generates reflected and transmitted P and S waves.  Fortunately 
Snell's law for this more complicated situation is still easy to prove, 

1 − 𝑆𝑙𝑜𝑤
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𝜃+G= 𝜃*G

(See Unearthing Fermi's Geophysics, G. Segre and J. Stack, U. Chicago 
Press):

As with light waves travelling from glass (slow) into air (fast), sound waves passing from the slower medium to a faster medium are refracted 
away from the normal.

Snell's Law 



https://en.wikipedia.org/wiki/Ultrasonic_testing

Non destructive testing

Ultrasonic waves in solids are widely used to detect flaws, 
particularly in metal parts.  This is known as non-destructive testing.   
Frequencies up to about 10 MHz are commonly used.  Referring to the 
figure below, if there’s a flaw some distance D beneath the surface then 
that produces an echo as shown on the screen.   Welds are a particular 
concern and ultrasound is routinely used to test them in critical application 
like pipelines.   Sometimes the flaws generate higher harmonics which can 
be useful for detecting corrosion in places where it's not visible on the 
surface.  

https://www.sealaviation.com/about-non-destructive-testing

https://en.wikipedia.org/wiki/Ultrasonic_testing



Destructive ultrasound

In some cases ultrasound can be focused to sufficient intensity to generate shock waves.  These can be used to break up kidney 
stones.  

https://www.urologysanantonio.com/kidney
-stones/lithotripsy



Seismology

Sound waves in solids are central to seismology.   What is known about the earth's structure has come largely from the study of
seismic waves.   Aside from some variations nearer the surface,  The figure below shows that as we go down into the earth both S and P 
waves travel faster.  Then, at a depth of 3000 km, S-waves cease to propagate and the P- wave sound velocity drops significantly.   Since 
shear waves do not propagate through a liquid, the conclusion is that the earth's outer core is a liquid.   The next figure shows how 
observations bear out this hypothesis.     Sound waves are shown radiating out from the epicenter of an earthquake and passing through 
different regions of the earth.

https://en.wikipedia.org/wiki/Seismic_wave



https://en.wikipedia.org/wiki/S
eismic_wave#/media/File:Seism
ic_wave_travel_through_Earth.
png

Focus first on the S-waves.    If the sound velocity were the same everywhere the rays would simply point radially outward from the 
epicenter and never change direction.   However, as the wave goes deeper into the earth it speeds up.   The rays bend away from their 
initial direction, curving around and eventually returning to the surface.    Notice the large S-wave shadow zone where no S-waves are 
detected.  Ray S1 reaches the Mantle-Core boundary with 𝜃.9 = 𝜃*9 = 90°.   It just skims the core and continues on, reaching the earth's 
surface at 103° latitude.   To observe S-waves at latitudes larger than 103° they would need to penetrate the core.   Evidently they don't, 
which was key to realizing that the earth's outer core is a liquid.   

P-waves, which are longitudinal, can travel through the liquid outer core and make it all the way to the opposite side of the earth. 
Take a look at the ray S1 that just skims the outer core.  Like the corresponding S-wave, its angle of incidence is 90°.  Part of the ray reflects 
and continues on to reach the surface at 103° latitude.   But part of it, labelled S2, refracts into the liquid core since the P-wave velocity in 
the liquid is lower than in the solid mantle.   S2 travels through the liquid core, then back into the mantle, eventually reaching the surface at 
150° . In between 103° and 150° there are no P-waves, just a P-wave shadow zone.  The earth's inner core turns out to be solid, as 
hypothesized by Inge Lehmann in 1936.  She noticed that seismic data showed evidence for very faint P-waves in the P-wave shadow zone.   
She interpreted these signals as P-waves from the liquid outer core reflecting off the inner core, which is consistent with a solid inner core.   

S1
S2

S1

P-wave shadow zone
S-wave shadow zone

P-wavesS-waves



https://www.vox.com/2015/5/13/8595157/inge-lehmann



Rayleigh Waves

In addition to bulk P and S waves, seismic disturbances generate surface waves.  The most common is the Rayleigh wave, shown below 
and predicted by Lord Rayleigh in 1885.   It’s a combination of longitudinal and vertical transverse motion shown by the arrows, rather like waves 
on the surface of the ocean.  The motion is elliptical with counterclockwise particle motion.   The displacements from the wave penetrate into 
the surface a distance of order one wavelength.  On the ocean the restoring force is gravity while here it’s the elasticity of the solid.   Rayleigh 
waves on the earth's surface travel about 7800 mph (3200 m/sec) and often cause the most disruption from an earthquake.  

http://www.av.it.pt/jisis/saw.html

https://commons.wikimedia.org/wiki/File:Rayleigh_wave.svg

Very low frequency ( < 1 Hz) Rayleigh waves are typical of seismic activity.  Higher frequency Rayleigh waves (100 kHz) are used
For nondestructive testing of structures.   Very high frequency ones ( 107 Hz – 1010 Hz ) are used throughout the electronics industry, 
particularly for precisely defined radio frequency filters.    Within the past 20 years, Rayleigh wave devices have been exploited for chemical 
and gas sensing and for microfluidics of biological specimens. 

~𝜆



https://onlinelibrary.wiley.com/doi/full/10.1002/stc.2246

Non-destructive testing with Rayleigh waves

Since they are confined to within about a wavelength of the surface, Rayleigh waves can be particularly useful to problems just
beneath the surface.   This can occur with reinforced concrete structures in which the steel reinforcing bars may have corroded due to tiny 
cracks in the concrete.   That’s apparently what caused the collapse of the bridge in Genoa, Italy, which had supporting cables encased in 
concrete.  

Genoa bridge collapse

The scheme shown below uses Rayleigh waves to search for flaws in 
the reinforced concrete just below the surface.    A transducer 
generates conventional 100 kHz compressional waves in the wedge, 
made from a material with lower sound velocity than concrete, in this 
case teflon.   If the angle of incidence satisfies the condition for total 
internal reflection,

sin 𝜃� =
�NOPQO
�RSTOUQV

then Rayleigh waves are generated.   These then interact with cracks 
that are within about one wavelength of the surface and reflect some 
of the sound back, which can be detected with a second transducer.   



https://en.wikipedia.org/wiki/Love_wave

The plots show signals from two successive earthquakes in 
Papua New Guinea back in 2010.  The direction of propagation was 
west to east across the Pacific.  Seismometers in California were 
able to distinguish all three components of the surface motion 
from each of the two quakes.  Vertical motion (green) came from 
Rayleigh waves as did East-West (longitudinal) motion.   The North-
South ground motion, in red, came  from Love waves.  The P and S 
bulk waves generally arrive earlier than Rayleigh and Love waves. 

From Berkeley Seismology Lab, 
https://seismo.berkeley.edu/blog/2010/07/19/a-race-across-
the-pacific-ocean.html )

Love Waves

Love waves are the second kind of sound wave confined to 
the surface of a solid.  The displacement in a Love wave is 
transverse and purely horizontal.   Unlike Rayleigh waves, Love 
waves require a layer on top of the underlying solid in which the 
displacement is mostly confined.  The layer should have a lower 
sound velocity than the surface.  They were first predicted by A.E.H. 
Love in 1911.  For him, the thin layer of interest was the earth's 
crust, whose thickness (about 15 km on average) he wanted to 
determine.   Love waves from seismic activity travel about 10,000 
mph along the earth's surface.  

https://seismo.berkeley.edu/blog/2010/07/19/a-race-across-the-pacific-ocean.html


Surface acoustic waves (SAW) devices

Electronic devices that make use of Rayleigh waves have been around since the 80's and are integral to all kinds of high 
frequency equipment like cell phones.   They're called SAW filters and the basic layout is shown below.  The substrate is a piezoelectric.  
LiNbO3 is a widely used material but there are many others.   On one end a periodic array of metallic fingers is patterned.  This is called 
an interdigital array or IDT.  It's driven by a generator at some frequency f.  The fingers produce a periodic electric field in the 
piezoelectric which, in turn, launches a Rayleigh wave.  The wave travels some distance down the surface and encounters another IDT 
at the other end.  By the inverse piezoelectric effect, the incoming wave generates a time-varying voltage across some load impedance 
ZL which might be the input to an amplifier.  

The system is resonant in that a signal whose frequency corresponds to sound whose wavelength equals the period of the digits
is preferentially generated and received.  Other frequencies are highly suppressed so the device acts as an electrical filter.  Instead of 
inductors and capacitors, which are large, lossy and drift with temperature, the filtering action in a SAW takes place through the 
interference of Rayleigh waves.  SAW filters are cheap, widely available and indispensable for mobile communications. They can be 
designed to operate anywhere from a few MHz to a few GHz. The upper frequency limit to the SAW is limited by by the spacing d
between electrodes.  For one widely used crystalline cut of LiNbO3, the sound velocity is 3960 m/sec so f = 2 GHz corresponds to d = 
2000 nm.   



SAW filters

The figure is a side view of the interdigital 
electrodes patterned on top of the piezoelectric SAW 
substrate.    They are driven periodically with 
alternating voltages.   Resonance is achieved when, 

𝑑 = 𝑚 𝜆:+;5/.42 = 𝑚
𝑐:+;5/.42

𝑓

SAWs are usually driven near the fundamental 
frequency, m = 1. 

Fundamental 
Rayleigh wave

3rd harmonic wave

Electrodes

Frequency selectivity

For a device to be an electrical filter we need to know how it responds to all frequencies.  The SAW filter operates like a diffraction 
grating.   Label the N fingers from left to right n = 0, 1, 2,…, N -1 … located at x = 0, d/2, d, 3d/2, ….   These apply alternating voltages,  

𝑉, = −1 , 𝑉 𝑒%.<)

The Rayleigh wave amplitude An from each electrode is proportional to its exciting voltage Vn.   The wave amplitude some position x to the 
right of the interdigital array, will be the sum of the waves from each electrode.   But each wave must travel a distance d/2 less than its 
neighbor to the left so it picks a phase shift -kd/2 , just like a diffraction grating.  The Rayleigh wave amplitude at (x,t) is the sum,

𝐴 𝑥, 𝑡 ∝ m
2W (
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1 − −𝑒-+ ⁄=Z )

https://www.sciencedirect.com/topics/physics-and-astronomy/interdigital-transducer



A high frequency filter is usually designed to pass frequencies in a narrow band close to the fundamental frequency defined by,

𝑓& =
𝑐:+;5/.42

𝜆&
=
𝑐:+;5/.42

𝑑
→ 𝑘&𝑑 = 2𝜋

In our expression for the wave amplitude, write the wavenumber as the fundamental plus the deviation from it, 

𝑘 = 𝑘& + ∆𝑘 =
2𝜋
𝑑
+ ∆𝑘 → −𝑒%. ⁄>0 "= −𝑒%. ⁄>"0 "𝑒%. ⁄∆>0 " = 𝑒%. ⁄∆>0 "

Putting this into the expression for the wave amplitude gives,

𝐴 𝑥, 𝑡 ∝ 𝑉𝑒. >@%<)
1 − −𝑒%. ⁄>0 " A

1 − −𝑒%. ⁄>0 " = 𝑉𝑒. >@%<)
1 − 𝑒%. ⁄∆>0 " A

1 − 𝑒%. ⁄∆>0 " = 𝑉𝑒. >@%<)
𝑒%. ⁄A∆>0 !

𝑒%. ⁄∆>0 !
sin ⁄𝑁∆𝑘𝑑 4
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Now convert the deviation in wavenumber to the corresponding deviation in frequency,

∆𝑘
𝑑
4
=

∆𝜔
𝑐:+;5/.42

𝑑
4
=

2𝜋∆𝑓
𝑐:+;5/.42

𝑑
4
=
𝜋∆𝑓
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What we generally care about in filters is the absolute square of the amplitude because that is what the receiving interdigital array will 
eventually register.  Therefore, 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 ∝ 𝐴 " =
sin𝑁 𝜋∆𝑓2𝑓&
sin 𝜋∆𝑓2𝑓&

"

=
sin𝑁𝑋
𝑋

"

It's the diffraction function, not surprisingly.  The plot shows the response
as a function of the dimensionless variable X.  The bandwidth of the filter is
defined by the values of ∆𝑓 when the output voltage first falls to zero.  

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
4𝑓,
𝑁

≪ 𝑓, 𝑁 ≫ 1

∆𝑓 =
2𝑓,
𝑁

X

∆𝑓 = −
2𝑓,
𝑁



By adjusting the pattern of both the transmitting and receiving interdigital arrays it's possible to synthesize all kinds of filter 
functions.  They come encased in packages like the ones shown below – some less than a mm in size.   They are used extensively in cell 
phones to select out specific frequencies and strongly attenuate nearby ones.  The filter transfer shown below (right) is designed for a cell 
phone passband of 820 – 850 MHz. The response falls very rapidly once the signal frequency moves out of the passband.  SAW filters 
operate in the frequency range from about 10 MHz - 2000 MHz.

https://www.murata.com/en-global/products/inductor/overview/app/app1/mobile/mobileindex/saw

SAW sensors

SAWs are widely used as sensors.  You might want to detect a 
particular gas like carbon monoxide.   Then coat the middle region of 
the SAW with a film of some chemical that traps or reacts with the CO.   
This changes the velocity of the surface acoustic wave and therefore it 
will change the amplitude and phase of the wave reaching the second 
interdigital array.   The extreme sensitivity of the SAW to frequency then 
leads to big changes in the voltage that is read out of the second array 
and provides a way to detect small amounts of absorbed gas.  



Sensors based on Love waves

Love waves are are also used in SAW sensors.  To detect a particular compound like formaldehyde, the surface of the SAW must be
functionalized, i.e., coated with a film of something that reacts with the formaldehyde.  If the speed of sound in the film is less than in the 
substrate,  Love waves can travel along the SAW transducer, mostly confined to the thin film.  In other cases, the thin film may itself be 
piezoelectric, as in the case of ZnO.    Again, if the conditions are right, Love waves will be propagated between the interdigital transducers 
and their velocity will be slightly changed by the absorption of gas in the sensitive layer.  

https://teams.femto-st.fr/equipe-cosyma/surface-acoustic-waves-sensors-environmental-control

SAW sensors like this are usually operated as 
oscillators.  The amplifier drives the right IDT which 
sends a sound wave across the sensing region to the 
left IDT.   The signal it receives goes back to the 
amplifier in a feedback loop.  If the gain and phase 
conditions are adjusted correctly the feedback loop 
oscillates near the SAW fundamental frequency.   The 
absorption of gas molecules changes the wave 
velocity and shifts the frequency of oscillation, which 
can be measured very accurately. 



Strain sensing

SAWs can be used to detect changes in torque a torque sensor.  The piezoelectric substrate of the SAW is mounted directly on a rotating 
shaft.   Rotational stresses in the shaft translate into changes of the SAW resonant frequency, something that, again, can be measured to 
parts in 109.  Here, the SAWs are excited and read out by wireless electronics.

http://wentec.com/rotarytorque/sawprimer/



SAW microfluidics

In the past few decades there has been considerable motivation to do biological analysis faster and cheaper.   The ultimate goal is 
the "lab of a chip" in which micro-liters or less of blood or some other material can be rapidly moved around, stirred, mixed, separated and 
analyzed.  All of this requires doing fluid mechanics on a very small (micron) scale – microfluidics.  Ordinary fluid flow in and around very 
small objects is dominated by viscosity (low Reynolds number for fluid mechanics experts.)   It's diffusive and therefore slow which makes 
mixing and stirring difficult.

The figure below is an example of where SAW transducers come in.  A drop of the material to be studied is deposited on the surface 
of a SAW device.   The IDT generates surface waves which then interact with the droplet.   The Rayleigh waves can generate longitudinal 
sound waves in the droplet that propagate at the angle  𝜃: .    If the sound amplitude is high enough, nonlinear terms in the Navier-Stokes 
equation will generate fluid flow shown inside the drop.  This kind of flow is called acoustic streaming, first observed and explained by Lord 
Rayleigh.   Streaming is much more efficient at mixing and stirring than diffusion.  It can also provide a way to physically move fluids around 
on the surface. 

From "Acoustic Wave Based 
Microfluidics and Lab-on-a-Chip", 
J.K. Luo, Y.Q. Fu, W.I. Milne, DOI: 
10.5772/56387

https://www.intechopen.com/ch
apters/45575



Acoustic streaming

Streaming is a nonlinear acoustic effect.   A high frequency acoustic disturbance of large enough amplitude will excite nonlinear 
terms in the Navier Stokes equation.   The theory is involved but the basic approach is like perturbation theory.   The density and fluid 
velocity are now written as expansion with successively higher order terms,

𝜌 = 𝜌' + 𝜌B = 𝜌' + 𝜌&B + 𝜌"B +⋯ �⃗� = �⃗�& + �⃗�" +⋯

𝜌&B and �⃗�& are density and velocity in the original sound wave.  Focus just on the continuity equation,   

𝜕𝜌
𝜕𝑡
+ ∇ ) 𝜌�⃗� =

𝜕
𝜕𝑡

𝜌' + 𝜌&B + 𝜌"B +⋯ + ∇ ) 𝜌' + 𝜌&B + 𝜌"B +⋯ �⃗�& + �⃗�" +⋯ = 0

The first order version is linear, 
𝜕𝜌&B

𝜕𝑡 + 𝜌'∇ ) �⃗�& = 0

The second order version contains a product of the density and velocity of the original sound wave, 𝜌&B and �⃗�& . 

𝜕𝜌"B

𝜕𝑡 + 𝜌'∇ ) �⃗�" + ∇ ) 𝜌&B �⃗�& = 0

You can think of it as a driving force for the higher order terms 𝜌"B and �⃗�" .   But if 𝜌&B and �⃗�& both vary as sin𝜔𝑡 then the product will have a 
term that is independent of time since,

sin𝜔𝑡 sin𝜔𝑡 =
1
2
+
1
2
cos 2𝜔𝑡

Junru Wu, Fluids 2018, 3(4), 108; https://doi.org/10.3390/fluids3040108

The full derivation requires us to do the same expansion with the 
equation of motion, including viscosity.  In the end, you obtain 
with a time-independent velocity field �⃗�" that varies in space 
but is driven by the acoustic pressure disturbance oscillating at 
the frequency 𝜔.  The figure shows streaming in a closed tube 
with a sound source at one end.  The streaming flow vectors are 
shown by arrows. 

https://doi.org/10.3390/fluids3040108


approach, the primary acoustic radiation force on a small,
spherical particle in an inviscid fluid has been derived as:69
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! "

, (16a)
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, (16b)

f2~
2 rp{r0

# $

2rpzr0

, (16c)

where, again, the angle brackets denote time averaging over an
excitation cycle, a is the radius of the particle, c0 is the speed of
sound in the medium, b0 and r0 are the compressibility and
the density of the fluid, and b0 and r0 are the compressibility
and the density of the particle, respectively. A perturbation
approach similar to eqn (7) was utilized to derive eqn (16).70

Eqn (16) are valid only for an inviscid fluid. Expressions for a
viscous fluid can be derived using the general description of
acoustic radiation pressure, eqn (15).63

All of the above discussion regarding acoustic radiation
pressure describes the force acting on a single particle that is
present in fluid subjected to a SAW. If there are other particles
contained in this same fluid, then acoustic interactions with
these other particles will generate additional secondary forces
on the particle being examined.69 The net effect of these
primary and secondary acoustic radiation forces is to move a
particle towards either the pressure node or the pressure
antinode, depending on the mechanical properties of the
particle.71

It is important to note that these particles will be subjected
to both a net acoustic radiation force and a force from the
SAW-induced fluid streaming. Which force dominates is
dependent on the size of the particle: particles with dimen-
sions above a particular size threshold will have their motion
dictated by the acoustic radiation force. Barnkob et al. found
that the size threshold is dependent on factors such as
actuation frequency, acoustic contrast factor, and kinematic
viscosity.72 Size threshold was demonstrated, both computa-
tionally and experimentally, to be 1.4 mm for polystyrene beads
subjected to an acoustic frequency of 2 MHz in water.

2.2 Microfluidic technologies enabled by TSAWs

In this section, we review the application of TSAWs in both
open and confined microfluidic geometries to accomplish (1)
fluid mixing, (2) fluid translation, (3) jetting and atomization,
(4) particle/cell concentration, (5) droplet and cell sorting, and
(6) re-orientation of nano-objects. These examples demon-
strate the growth of TSAW into a key component for many
emerging on-chip applications.

2.2.1 Fluid mixing. Many lab-on-a-chip applications require
the mixing of two or more fluids. However, the laminar flows
that predominate at the micro-scale result in mixing that
occurs via diffusion. Such diffusion-based mixing is too slow
for most lab-on-a-chip applications, so researchers have
looked to SAW-induced streaming for its ability to mix fluids
quickly by generating chaotic advection.

A few groups have demonstrated methods using TSAWs to
mix fluids in an unconstrained droplet. Shilton et al.56

generated a TSAW using a single-phase unidirectional trans-
ducer (SPUDT) to induce liquid recirculation inside a droplet.
Their results, shown in Fig. 3a, demonstrate the fast mixing of
dyed water and dyed glycerine solution. Frommelt et al.73

demonstrated a more refined TSAW-based droplet mixing,
using a pair of tapered IDTs (TIDTs) to generate a narrow SAW
beam with a tunable launching point. By individually
modulating the input signals of the two TIDTs, they demon-
strated the ability to temporally modulate the flow patterns
generated by each IDT to achieve efficient mixing. They also
demonstrated that they could control mixing speed (within the
droplet) by adjusting SAW amplitude and frequency.

Tseng et al.54 also used IDTs to demonstrate TSAW-based
mixing. Instead of mixing fluids in an unconstrained droplet,
they mixed fluids inside a microchannel (Fig. 3b). They
performed a comprehensive experimental study on the effects
of various operational parameters, showing that mixing
performance could be significantly improved by applying
higher voltage signals to the IDTs. Luong et al.74 used a curved
IDT design to focus the generated acoustic energy, resulting in
considerably improved mixing performance relative to the
parallel IDT design employed by previous groups.

Recently, Rezk et al.75 incorporated SAW-induced mixing in
a paper-based microfluidic device. They utilized a hue-based
colorimetric technique to compare the mixing efficiency of
their device with that of capillary-based mixing: the SAW-based
mixing showed greatly enhanced consistency and speed.

By adjusting IDT design and input signal parameters,
researchers have proven that TSAWs can effectively and
precisely mix fluids in both open and confined fluid
geometries. This versatility makes TSAW-based mixing tech-
niques extremely attractive in microfluidics.

Fig. 3 Fluid mixing by SAW-induced acoustic streaming. (a) Rapid mixing of
glycerine (light) and water (dark) in a droplet. (b) Mixing of fluorescence dyes
(light) with water (dark) in a rectangular microfluidic channel. Reprinted with
permission from ref. 73 and 54.
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The left figure shows how SAW-induced acoustic streaming is used to 
mix glycerine and water in both droplets and microfluidic channels. 

From "Acoustic Wave Based Microfluidics and Lab-on-a-Chip", J.K. Luo, Y.Q. Fu, W.I. Milne, DOI: 10.5772/56387

SAW-generated streaming tends to produce vortex-like flow 
patterns within the droplet.   These can be used to pump liquid through 
tiny channels.  The interdigital array is on the left and a channel is 
fabricated onto the substrate.  The SAW produces a streaming vortex as 
shown in (a) and (b).   If the vortex is smaller than the width of the 
channel then things mix but the fluid doesn't move.  On the other hand, 
if the vortex is bigger than the width of the channel there can be net 
flow of fluid and the device acts like a pump.  

Mixing Pumping



The need to position and move cells around has lead to a lot of imaginative designs beyond the standard interdigital array 
shown in (a).  Since the IDTs can be patterned using standard lithography techniques the designs are liimitless.  Pattern (b) sends 
out waves in just one direction.  Pattern (c) can generate more versatile standing wave patterns.  Pattern (d) is used to focus 
waves.  Pattern (e) is a chirp design that can send out waves over a range of frequencies.  Pattern (f) is an array of IDTs to produce 
custom standing wave patterns in the central region. 

https://www.mdpi.com/2072-666X/13/1/30



lity.169 However, optical tweezers depend on complex and
expensive optical setups, and the associated focused laser
beam can heat the moved object to temperatures that cause
physiological damage. To reduce costs and minimize damage,
researchers have been developing SSAW-based single-cell
manipulation platforms.

When a single particle contained in stagnant fluid is
exposed to a SSAW field, the primary acoustic radiation force
acts on the particle and pushes it to either a pressure node or
antinode (depending on the particle’s properties), trapping it
at that location. Once the particle has been trapped, it can be
moved by changing the frequencies and phase of the
constituent SAWs.162–168 Ding et al. recently demonstrated
SSAW-based manipulation on particles, cells and even milli-
meter-sized C. elegans worms contained in stagnant fluid
inside a microfluidic chamber.29 Their device consisted of a
2.5 6 2.5 mm2 PDMS chamber asymmetrically bonded to a
LiNbO3 substrate between two orthogonal pairs of chirped
IDTs (Fig. 21a). The two pairs of chirped IDTs allowed the
device to move the objects trapped in the pressure nodes in x
and y directions independently. Fig. 21b displays the
effectiveness of this technique, as the researchers manipulated
a single bovine red blood cell through a pre-programmed
pattern, taking a photograph at each cell position and
compositing the images to trace the cell’s path. The
researchers examined particle speed and potential for cell
damage, finding that a 10 mm polystyrene bead is accelerated
to a velocity as high as 1.6 mm s21, and that HeLa cells
exhibited no significant physiological change after being
exposed to high power acoustic fields for 10 min. Finally, the
researchers placed C. elegans worms inside the chamber to
show that they could move an entire organism without visible
damage, as shown in Fig. 21c.

The acoustic tweezers device described above is biocompa-
tible, versatile, low-cost, simple in design, and convenient to
operate, making it an extremely attractive alternative to
conventional optical tweezers for manipulation of single
particles or cells. The successful trapping and manipulation
of a whole organism also sets the device apart.

3.2.6 Protein manipulation. Supported lipid bilayers (SLBs)
are critically important in cellular biology, as they regulate the
intracellular and intercellular movement of ions, proteins and
other molecules.170 Recently, researchers have applied SSAWs
to pattern SLBs, for use in membrane biology study. Hennig
et al. showed that local concentrations of SLBs can be
modulated by applying SSAW to a substrate.171 In the
experiment, standard IDTs generated shear SSAWs on a
LiTaO3 substrate to induce lateral reorganization of a lipid
bilayer. Higher membrane density was found in the antinodes
of the in-plane shear SSAW, while lower membrane density
was found in the nodes. The researchers carefully monitored
pattern formation and decay by fluorescence microscopy in
order to study diffusion times of supported bilayers during the
process. Diffusion times matched those attained with conven-
tional methods, confirming the accuracy of SSAW for pattern-
ing of SLBs. Hennig et al. further demonstrated the
modulation of DNA density on supported lipid bilayers by
binding DNA to a catonic SLB.172

Based on this lipid-patterning approach, Neumann et al.
further demonstrated that proteins bound to SLBs can be
accumulated, transported, and segregated using shear
SSAWs.173 As shown in recent work, SSAW-induced membrane
modulations can achieve accumulation of labeled lipids.
When the lipids are labeled with biotin, a biotin-binding
protein called neutravidin accumulates alongside the lipids at
pressure antinodes. The authors finely controlled the move-
ment of proteins on SLBs by adjusting the phase between the
two SAWs that combine to form the SSAWs. Phase adjustments
in turn changed the locations of pressure nodes and
antinodes, enabling protein transport in the 2D plane of the
substrate. Finally, the group used shear SSAWs to separate
avidin and streptavidin (two different biotin-binding proteins)
based on their sizes (Fig. 22a). Since streptavidin is the smaller

Fig. 21 (a) Device schematic and working mechanism of SSAW-based manip-
ulation of a single particle contained in stagnant fluid (i.e., acoustic tweezers).
(b) Composited image of a single bovine red blood cell translated in two
dimensions by changing the frequencies of the constituent SAWs. (c) Optical
images showing the manipulation and stretching of a whole C. elegans worm.
Reprinted with permission from ref. 29.
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Acoustic tweezers

Acoustic radiation pressure is a second force that is used to move and sort 
particles under the influence of SAW acoustic fields.  It's proportional (p')2, where p' is 
the pressure disturbance in the sound wave.   Depending on the particle properties 
(density, compressibility, size) it will force a particle toward either a sound wave 
pressure node or antinode.   The figure below shows the general idea.  Opposed IDTs 
generate a pattern of standing Rayleigh waves which, in turn, produce pressure waves 
in the fluid of the channel.  Particles of interest will be drawn to pressure nodes. 

The device shown on the right (a) uses 4 IDTs sending out Rayleigh 
waves to produce a 2-dimensional standing wave pattern in a square chamber.   
To move the blood cell around it's necessary to move the position of the nodes.   
That's done by changing the SAW frequency.   To do that efficiently, the IDTs 
must operate over a wide frequency range. That's accomplished with a chirp
design in which the finger spacing of the IDT varies continuously, similar to a 
broadband antenna.   Panel (b) shows successive locations of the blood cell that 
form the letters PSU (Penn State University.)  Panel (c) shows how the device 
can move an entire organism (a worm, evidently) from one location to another.

acoustic streaming induced by the TSAWs to perform useful
functions such as fluid mixing and cell sorting. In this section,
we review the latest on-chip innovations enabled by SSAWs.
Instead of harnessing the acoustic streaming, SSAW-based
devices use the primary acoustic radiation forces acting on
particles via the surrounding fluid. We will detail devices that
use these primary acoustic radiation forces to (1) focus a flow
stream of particles into a single-file line, (2) separate a flow
stream of particles based on particle properties, (3) actuate a
single particle/cell moving with a flow stream, (4) pattern a
group of particles in stagnant fluid, (5) manipulate a single
particle/cell/organism in stagnant fluid, (6) manipulate pro-
teins, and (7) align micro/nano materials. These technologies
enrich the flexibility and functionality of SSAW-based, on-chip
particle manipulation and will prove essential in building
next-generation lab-on-a-chip systems.

3.2.1 Focusing of particles in a flow stream. Microfluidic
focusing of particles in a liquid flow stream has attracted
attention mainly due to its direct applicability to on-chip flow
cytometry.145–149 To detect particles via flow cytometry, the
particles need to be lined up single-file so they can each pass
individually through a detection point. Many microfluidic
devices have achieved particle focusing hydrodynamically,
using sheath flows to align a particle stream single-file in the
middle of a microfluidic channel. However, these sheath flows
add substantial bulk to the microfluidic chip, increasing chip
complexity and size. Sheath flow also introduces additional
shear stress to the cells, which could affect cell viability and
other functions. Therefore, a number of researchers have been
investigating particle focusing methods that eschew sheath
flows. Some of the best methods have harnessed SSAWs.

Shi et al. accomplished particle focusing in a microfluidic
channel by situating the channel between two IDTs such that a
SSAW was established across the channel width with a single
pressure node that was located at the channel center.139 When
particles passed through the region of SSAW exposure, the
acoustic radiation force pushed them to the center of the
microfluidic channel width (i.e., two-dimensional focusing), as
shown in Fig. 17. Following this original work on SSAW-based
particle focusing, Zeng et al. reported that adding Bragg
reflectors inside or outside of the IDTs enhanced particle
focusing effects.150 These SSAW-based, sheathless particle-
focusing devices can be conveniently fabricated and operated.

Though focusing of particles within the channel width
satisfies the needs of some applications, others require that
particles be focused in both the channel width and height (i.e.,
three-dimensional focusing). 3D focusing is especially impor-
tant for flow cytrometry applications, as fixing particle position
along the channel height minimizes fluorescence variations
caused by varying focal depths. Shi et al. showed that SSAW
can effectively achieve 3D focusing.138 Applying a SSAW to
fluid in a microchannel, the researchers realized that a non-
uniform acoustic field generates a primary acoustic radiation
force transverse to the particles in the channel (i.e., in the
z-direction, relative to the device plane). This force will direct
all of the particles towards the point of maximum acoustic
kinetic energy. However, the acoustic radiation force acting in
the z-direction is weaker than that acting in the device plane.
Therefore, particles focus first along the channel width and

then migrate to a focal point along the channel height. The
researchers used a prism placed adjacent to the microchannel
to verify experimentally that particles did, in fact, focus in the
z-direction; they then validated this with theoretical calcula-
tions.

3.2.2 Continuous separation of particles in a flow stream. As
implied by eqn (17), a standing acoustic wave field exerts a
primary acoustic radiation force whose magnitude and
direction depend on particle size, density, and compressibility.
Therefore, SSAW fields can differentiate particles or cells
based on their physical properties. Shi et al. first reported
SSAW-based continuous separation of particles in a flow
stream in a PDMS microfluidic device.151 The researchers
situated a microfluidic channel between two IDTs such that a
SSAW was established across the channel width with half a
wavelength spanning the channel and a single pressure node
at the channel center. The researchers introduced a particle
mixture into the channel from side inlets while simultaneously
injecting a sheath flow from the center inlet (Fig. 18a). Because
larger particles tend to experience larger primary acoustic
radiation force, they migrate to the pressure node faster than
smaller particles. Therefore, with appropriate length of the
SSAW exposure region, SSAW enabled size-based particle
separation. Larger particles move to the center outlet, while
smaller particles remain in the side streams. This device
demonstrated a simple, efficient, and cost-effective method for
size-based particle separation.

Following the work of Shi et al., Nam et al. developed a
similar device setup and applied it to sorting blood cells from
platelets.152 First, to demonstrate the device, the researchers
pumped a mixture of large and small particles through a
separation channel from the device’s center inlet while
introducing sheath flows from side inlets. By positioning
SSAW pressure nodes near the channel walls, the researchers
managed to move larger particles from the center stream

Fig. 17 Schematic and working mechanism of SSAW-based focusing of particles
in a liquid flow stream. Reprinted with permission from ref. 139.
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