Superconducting magnetic
field sensors: SQUID
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SQUID - superconducting quantum interference device
SQUID helmet project at Los Alamos
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Magnetic field scales:
Earth field: ~1G

Fields inside animals:
~0.01G-0.00001G

Fields of the human brain:
~0.3nG

This is less than a hundred-
millionth of the Earth’s
magnetic field.

NanoGallery.info - Superconducting Helmet. SQUID used to measure brain

magnetic fields

SQUIDs, or Superconducting Quantum Interference Devices, invented in 1964 by Robert Jaklevic, John Lambe, Arnold Silver, and James
Mercereau of Ford Scientific Laboratories, are used to measure extremely small magnetic fields. They are currently the most sensitive
magnetometers known, with the noise level as low as 3 fT*Hz-"%. While, for example, the Earth magnet field is only about 0.0001 Tesla,
some electrical processes in animals produce very small magnetic fields, typically between 0.000001 Tesla and 0.000000001 Tesla.
SQUIDs are especially well suited for studying magnetic fields this small.
Measuring the brain’s magnetic fields is even much more difficult because just above the skull the strength of the magnetic field is only
about 0.3 picoTesla (0.0000000000003 Tesla). This is less than a hundred-millionth of Earth’s magnetic field. In fact, brain fields can be
measured only with the most sensitive magnetic-field sensor, i.e. with the superconducting quantum interference device, or SQUID.


https://www.nanogallery.info/nanogallery/?ipg=156

Superconducting quantum interference device: SQUID
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Here the blue color is a bulk superconductor, the white color represents empty space, dashed region is the insulator through

which electrons transit by quantum tunnel.
The dashed black line is a contour over which we calculate the phase change. The phase accumulation on a closed contour
like this one must be zero or 2ztn, where n is an integer. This is required because the wavefunction must be a single-value

function.

Since the wave function is a single-valued function, the total phase accumulation must satisfy the following formula:

APr1 + A@3z + APyz + A@q4 = 210



Superconducting condensate described as a quantum system

Superconducting Condensate:
.. d =
Reminder: The time-dependent Schrodinger equation is: lhaqj = HY=EY

If E=0 then the wave function is constant. This is the key for understanding superconductivity.

This equation is originally developed for a single electron. In a superconductor, the number of superconducting electrons is
very large and they all act in unison, i.e. coherently. One way to understand superconductivity is to assume that all the
electrons glue together into a superconducting condensate which then act as just one quantum particle described by a wave
function W. Although in the quantum devices, such as qubits, superpositions of states with different energies is possible, in
most superconducting devices, such as solenoids and SQUIDs the energy of the system is well defined, i.e. the equation
HWY= EWis valid. So, in this lecture we assume that superconducting electrons are in their ground state, which is a stationary
state.

-If no voltage is applied, The energy E is usually the minimum possible energy (ground state). Thus, finding the
wavefunction of superconducting electrons is equivalent to finding the ground state of one electron.

The ensemble of all superconducting electrons, i.e., those which have the same wavefunction, is called “superconducting
condensate”. It can be treated as just one electron, except that the normalization is different: The electronic density equals the
square of the wave function

ns = [P|2

Thus, to understand superconductivity at the very basic level we can think of just one electron, solve the corresponding
time-independent Schrodinger equation (with the vector potential included), find the wave function and normalize the wave
function to the density of the superconducting electrons, which is material-specific. Using the wave function we can calculate
all other physical quantities of interest, such as the electric current for example.



Supercurrent, superfluid velocity, charge density

Superconducting Condensate: Since there are many superconducting electrons in a typical superconductor device, and all
of these electrons are described by the same wave function (all are “coherent”), therefore the module squared of the wave
function equals the density of the superconducting electrons n.(r) = [y (r)|%. Such density is sometimes called “superfluid
density”. Thus, the density of the electric charge is p(r) = e*|1/1(r)|2 : Where e™ 1s the effective charge of superconducting
electrons, which is twice the charge of one electron (-e), i.e, —e*= —2e or e* = = 2|e| > 0 . The most important parameter is
the electric current. The electric current density, j(r), is the charge density multiplied by the velocity of the superconducting
condensate, i.e., j(r)=v(r)p(r)= v(r) e |Y(r)|? To define the electric current density, j, we need to know the superfluid
velocity, v, and the superfluid density, n,. These quantities can be calculated if the wavefunction in know.

The simplest wave function is the plane-wave wave-function. It describes homogeneous supercurrent in a superconductor.
Mathematically it is written as: Y= pyexp[ikr]=y exp[ipr/ a]. If there is no voltage, then E=0, then the quantum state is not
changing in time. Therefore, we use a time independent wave function in many cases.

In classical electrodynamics it is known that the canonical momentum of a charge particles is determined as:
p=m'v—e’A

And the Hamiltonian (explained in next two slides) is:
m'v?  (m'v)? (p+e'A)?

2 2m* 2m*

Here the charge of the superconducting particle is take as —e*

https://www.imagesco.com/magnetism/graphite-levitation-kit.html Diamagnetic graphite levitation



Charged particle in magnetic field: classical physics

2 Lorentz Force Law
So, the Lagrangian for a particle in an electromagnetic field is given by
The Lorentz force in Gaussian Units is given by:

v L, Q . = .
ﬁ=(2(f+§x§) (-L} L=§ﬂl‘b —Q;‘g+?1,-_,rl (2{)}

where Q is the electric charge, E(Z,t) is the electric field and B(Z. 1) is . . .
Q. 8o, B(Z,1) o (%) 4.1 The Hamiltonian for the EM-Field
the magnetic field. If the sources (charges or currents) are far away, £ and

B solve the homogeneous Maxwell equations. In Gaussian Units, they are We know the canonical momentum from classical mechanics:
given by

0L
g _ bi = =~ (27)
V-B=10 (5) O,
Using the Lagrangian from Eq. (26), we get
-~ - 10B ‘
Vx Bt =0 © po=mw+ 2 4, (28)
The magnetic field B can be derived from a wvector potential A: The Hamiltonian is then given by
5B g 1
B=VxA (7) H=) pi;— L= §m.-1,-'2 +Q o, (29)
where v resp. & must be replaced by p: Solving Eq. (28) for v; and
plugging into Eq. (29) gives
1dA 1 e L9 T2+Q (30)
= = ¥, — = —|p— — i Y -
F=qQq (-V@--E+—V(ﬁ'-ﬁ)) 2-mj c 4
ca e So the kinetic momentum in is in this case given by
P=mi=p- Q A (31)
¢
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Charged particle in magnetic field: classical physics

1 Introduction
So, the Lagrangian for a particle in an electromagnetic field is given by

Conservative forces can be derived from a Potential V(g,t). Then, as we

know from classical mechanics, we can write the Lagrangian as I = 1 muv? — Q ¢+ “ 5. A (26}
2 2 LS g c A
L(g,q,t)=T -V, (1)
where T is the kinetic energy of the system. The Euler-Lagrangian equa- 4.1 The Hamiltonian for the EM-Field

tions of motion are then given by
We know the canonical momentum from classical mechanics:

d (0L JL 0 @) .
i \0i) " g p=oo (27)
€I
In three dimensions with cartesian Coordinates, this can be written as ) )
Using the Lagrangian from Eq. (26), we get
d /= ~
—(VsL) —= VL =0. 3
dt ( ) ) pi = muv; + g A; (28)
Here, V; means the gradient with respect to the velocity coordinates. The Hamiltonian is then given by )
Now we generalize V(g,t) to U(q, ¢,t) — this is possible as long as L = ) . o
T — U gives the correct equations of motion. 1
U gives the correct equations of motion H=S pii— 1= §m.-a,-2 L0 (29)
) . where v resp. & must be replaced by p: Solving Eq. (28) for v; and
If we i(‘ltf:n’iifj,F m% with the force F', given by Newton’s Law, we can solve plugging into Eq. (29) gives
Eq. (20) for F: . 0
H=——2A4 +Q¢ (30)
~ = 1dA 1= ,_ 2m c
F=q (—Vp T o dt + Ev (v -4 ) (21) So the kinetic momentum in is in this case given by
- 1}11123h is just the correct expression for the Lorentz Force Law, given by P — mi — 75— Q i (31)
) . c
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Transition to quantum mechanics: Mathematic description of the supercurrent

Here m” is the effective mass of the charge carriers

In QM we replace momentum with momentum operator. and e” Is the effective charge carriers In the

Velocity operator in qguantum mechanics is: 1 * 1> ; * superconductor
Ity op In quantu ICSISs m*D = —ihV + e* 4 Since electrons form pairs in the superconductor, we may
choose
Magnetic field and vector-potential: B = curlA m*=2m and e*=2e.
Consider the case when the wavefunction such that its amplitude is approximately constant: [Y] =g

Therefore, the wave function can be written Sy = YPye'? =P, eP*/  The phase, ¢, is a function of coordinates.
Expression for the supercurrent density:  j = e*n,2v = (e*/m*) ngm*v

Now let us calculate the superfluid velocity, v, mean value
(“expectation value™): nam*v = Y (m* oY = ¢06—1<P(_ihv 4+ e*A)¢081<P

Note that the superconducting electron density is: 7ns = Y*y = P§
m*'v = e ¥ (AVp + e*A)e'? = hVp + e*A

e'’Ad  m" _ m
n o henS R

Correspondingly, the phase gradient is: V¢ +

Equation for the supercurrent: j = e*n v = (e*/m*)n,(hVep + e*A)



Gauge Invariance

Gauge transformation: Suppose we change the vector potential by a gradient of a function, as follows:
A=A+ Vy

With such transformation the vector potential the magnetic field remains the same: B'= curl(A+ Vy) = curlA =B

With such gauge transformation all physical quantities remain unchanged, including the velocity. To calculate the velocity at
each point in the superconductor we need to use the collective wave function of superconducting electrons. With the gauge
transformation presented above the phase of the wavefunction also changes. The change of the phase must compensate the
transformation of the vector potential in such a way that the local superfluid velocity is not changed.

Under the gauge transformation, the phase of the wave function is changed to ¢". From the previous slide,

* * * * !/ *

m- . m e
j=7v=Vp+——=Vp'+——=V(p' -9)+ (A —A) =0,

h h

*
he*ng
k

which is simplified to v <(p’ — o+ %) — 0, and so



Josephson junction (JJ) in zero magnetic field

JJ is formed by two superconductor placed very close to each other but separated by a very thin (a few Angstroms)

insulating barrier.
superconductor insulator

/%

superconductor

T

Supercurrent is defined by the phase difference
A = @, — @, between the two superconductors:

| =I:sin(Ag)=lsin(Ag,)

This current is flowing through the insulator barrier
without any voltage applied. Here I, is the critical
current, which is a constant for a given junction.

A supercurrent I can flow, horizontally, from the left superconductor to the superconducting block on the right through the
insulating barrier (dashed region). The current is due to the quantum tunneling effect. The formula for the current (in the
case when vector potential is zero) is: I = I sin Ag where A is the phase difference and I.. is the critical current, i.e., the
maximum possible supercurrent. Note that the current is controlled by the phase difference and not by the voltage as in

normal circuits.

The arrow shows the trajectory over which we calculate the phase difference, as follows:

2
A<p=j Vodl =@, — ¢4

1
The formula above is true when the magnetic field is zero and the vector potential is zero. Also, it assumes the phase is
constant within the bulk of the superconductor.



Josephson junction (JJ) in presence of magnetic field

The phase difference,A, depends on the choice of the gauge. Yet, the supercurrent must not depend on the choice of the
gauge. Therefore, the expression for the supercurrent needs to be modified as follows:

[ = 1I.sin Ay
Where Ay is so-called gauge invariant phase difference. In the example we consider in the previous slide Ay= A in the
gauge choice in which vector potential is zero. Now we transition to a different gauge, A = Vy. Under such gauge
transformation the phase changes to a different value ¢’, defined by ¢’ = ¢ — % x. Therefore, the phase difference
becomes , 2 e* 2 e* 2
Ap' = [[Vodl —— [ Vydl = Ap —— [ Adl

But the supercurrent must not change since all physical quantities are invariant under gauge transformations.
Thus, we introduce a gauge invariant phase difference such that it is equivalent to the phase difference at zero gauge but

remains unchanged as we change the gauge. This gauge invariant phase difference is: Avy.
e’ (2
A)/— A(P + Efl Adl
With such definition we achieve the required invariance Ay= Ay’ because

,_ , e’ (2 e’ (2 e’ (2
Ay'=A@" +— [ Adl = Ap —— [ Adl + — [ Adl = Ag= Ay



dc SQUID simple model |

v

Here the blue is bulk superconductor, white is empty space, dashed region is the insulator through which electrons transit by

guantum tunnel.
The dashed black line is a contour over which we calculate the phase change. The phase accumulation on a closed contour

like this one must be zero or 2ztn, where n is an integer. This is required because the wavefunction must be a single-value

function.
The total phase accumulationis  A@y1 + A@s; + A@ys + @1y = 270

e* 2 e* 4
Apr1 = Ayz1 — 7 Adl A@yz = AYsz — ?'[ Adl
1 3

The integral of the vector potential over a circle is the magnetic flux through the SQUID loop:
2 2 2 2
J; AdlL+ [7Adl+ [© Adl+ [ Adl= @

Magnetic flux definition: @ = A, B. Here A, is the area of the loop (the dashed line contour) and B is the magnetic field
applied perpendicular to the loop.



dc SQUID simple model

* 2 e* 4

e* 2
e Apyy = Ayyq — ?'[ Adl
A)/21 — % Adl + A(sz + A]/43 — % Adl + A(p14 = 27n * 14
1 3 .

A@yz = Ayyz — 7 Adl
3

Remember the expression for the supercurrent: j = engv = (e*ng/m*) (AVe + e*A)

But in bulk superconductor the supercurrent is zero due to Meissner effect: j = 0
Therefore: hVp = —e*A
e e

) ) 3 * 3 1 * 1
Therefore, the phase gc.cumulatlon in the Apsy = j Vodl = _(_)f Adl Apy, = j Vodl = _(_)f Adl
superconductor bulk is: 2 n’, 4 h,

x ~4

h s

* 2 e*

3 e* 1
1 h 2 h 4

The integral of the vector potential over a circle is the flux through the SQUID loop:
[fAdl+ [} Adl + [ Adl + [, Adl = &

* *

. | e e @
Final result for SQUID: AYoq 4 Ayys = %q) + 21Tn = ?q) + 2ntn = 27‘[¢— + 21n
0

Usually, n=0 to minimize energy. Here ¢, = e£ Is the magnetic flux quantum, which is a constant.



dc SQUID critical current

Now we can compute the total supercurrent trough the SQUID, using the formula Ay,q + Aysz = 2n® /P + 21nn

I =1.sinAy,; + I.sinAyz, = 1. sinAy,; — I, sin(2n® /¢y + 2nn — Ay,q) = AYsz = —Ay3,
[ sinAypq — I sin(2n® /g — Ayzq) =
I, sin Ay,q + 1. sin(Ay,; — 2nd®/¢y) =

_ _ nd_ TP
I.[sin Ay,q + sin(Ay,, — 2P/ ¢py)] = 21, cos(—¢ )sin| Ay,, — —¢
0 0

To find the critical current one needs to find the maximum possible value of the
supercurrent for all possible choices of the phase difference Ay, .

T
The critical current of the entire SQUID, as a function of magnetic flux is: I, soup = 21, |cos—|
0

2

Note that the critical current is, by

definition, always positive. It is the IC(B)/IC(O)
maximum current which SQUID can . |
sustain with zero voltage applied to it.
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