
Digital Filters – A brief introduction

The top figure shows an analog waveform that has been sampled. The combination of a sample and hold circuit and 
an analog to digital converter (ADC) samples the analog waveform at the times shown by the dots and performs the 
conversion.  The entire process of sampling, holding and converting takes some time Δt .   The digital output looks like the 
lower figure.   Let xn be the output of the ADC corresponding to time tn = nΔt.   Now imagine storing all of the xn in memory 
so we can go back and analyze it at leisure.   

https://forum.allaboutcircuits.com/threads
/analog-vs-digital-waveforms.157784/

As we’ll see, digital filtering is a sophisticated form of averaging.   Rather that Vin and Vout, it is customary to call xn the input 
to the filter at time tn and yn the output at tn.    
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Non-recursive filters

Consider a filter which looks at the data in memory and performs the following operation,

		yn = axn −2 +bxn −1 + c xn +bxn +1 +axn +2
Like any filter we need to know its frequency response.  To do that, use phasors to represent the digital data at each point in 
time. 

		xn =Re x̂ ω( )eiω tn( ) =Re x̂ ω( )eiω nΔt( ) yn =Re ŷ ω( )eiω tn( ) =Re ŷ ω( )eiω nΔt( )
Now substitute the phasors into the expression for the filter,  

		 ŷe
iω nΔt = ax̂eiω nΔt e−2iω Δt +bx̂eiω nΔt e− iω Δt + c x̂ eiω nΔt +bx̂eiω nΔt eiω Δt +ax̂e iω nΔt e2iω Δt

Solving for the transfer function we obtain, 

		

T ω( ) = ŷ
x̂
= ae−2iω Δt +be− iω Δt + c +beiω Δt +ae2iω Δt

T ω( ) = c +2bcos ω Δt( )+2acos 2ω Δt( )
Because the filter expression is symmetric about tn, the transfer function is real.  Remember that Δt is a constant 

fixed by the properties of the ADC.   There are 3 parameters, a, b and c.   Suppose we want this to be a low pass filter.  In 
that case, set T(0) = 1 which implies 1 = c + 2b + 2a.    It would also be nice to have the filter go to zero at the Nyquist
frequency, fN = 1/2Δt.   That yields a second condition:  0 = c - 2b + 2a.  These two conditions imply b = ¼ and c = ½ - 2a so 
the free parameter a now determines the remaining shape of the filter. 



The plot shows the transfer function T for a = 
¼, 0 and -1/4.  T is plotted as a function of f / fS
where fS = 1/Δt , the sampling frequency.  f / fS = 0.5 
corresponds to the Nyquist frequency.  For a = ¼ , T 
crosses zero.   That might be useful if you were 
trying to eliminate that particular frequency.   The (-
) sign corresponds to a 180° phase shift.  

This filter is non-causal, meaning that the 
output at time tn requires input data at times after
tn.  That’s perfectly okay if the data is stored 
somewhere and you come back later to analyze it, 
but it obviously cannot function as a filter in real 
time since we can’t know the future.    A causal filter 
might have the form, 

		yn = co xn + c1 xn −1 + c 2 xn −2 + ...

The filter is also non-recursive, meaning that the output is purely a function of the input data.  It does not require 
knowledge of the filter output at earlier times.    

		yn = a yn −1 + c xn
In this case, the output at time tn depends on both the input data at tn and the output of the filter at an earlier time.  This is 
the simplest example of a recursive filter.  This one is also causal and could be used to filter data in real time.   
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Recursive Filters

Now consider the following filter,    



		
yn−1 =Re ŷ ω( )eiω tn−1( ) =Re ŷ ω( )eiω nΔte− iω Δt( )

Substitute the phasors into the expression for the filter and cancel the common exponential factor to obtain the transfer 
function,

		
ŷ = a ŷe− iω Δt + c x̂ ⇒ ŷ

x̂
=T ω( ) = c

1−ae− iω Δt

Let’s again make it a low pass filter and set the magnitude of the transfer function to 1 at ω = 0.   Also use real coefficients.  
The transfer function is given by,

		
T 0( ) = c

1−a =1 ⇒ T ω( ) = 1−a
1−2acosω Δt +a2

I’ve plotted the transfer function for a = ¾.  It’s a low pass 
filter with a 3 dB frequency of 0.46 fS.   The horizontal axis goes 
up to 0.5 which corresponds to the Nyquist frequency.   There’s 
no need to plot it for higher frequencies since it is symmetrical 
about the Nyquist frequency.   Moreover, we would try to 
eliminate any signals with frequencies near to or above the 
Nyquist frequency with an anti-aliasing filter ahead of the ADC.
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It’s instructive to return to the complex form of the transfer function and write it in terms of f = ω/2π and the Nyquist
frequency, 

		
T f( ) = 1−a

1−ae− iω Δt =
1−a

1−ae− i 2π f Δt =
1−a

1−ae− i 2π f fS
= 1−a
1−ae− i π f fN

fN =
1
2Δt

Let’s assume that any signals reaching the filter will be well below the Nyquist frequency.  In that case we can expand the 
exponential in the denominator and rearrange things, 

		

T f( )≈ 1−a
1−a 1− iπ f fN + ...( ) =

1
1+aiπ f 1−a( ) fN

= 1
1+ i f f0

f0 = f3dB = fN
1−a
π a

= 1
2π Δt

1−a
a

⎛
⎝⎜

⎞
⎠⎟

This now looks just like a low pass filter whose 3 dB frequency is set by the sampling time Δt and the filter coefficient a.  
The larger the value of a, the lower the 3 dB frequency.    Since a is the coefficient of the previous output value, we might 
say that as the filter weights the past (yn-1) more heavily than the present (xn) the the lower its 3 dB frequency will be. 
Using a = 0.75, this expression gives a 3 dB frequency of 0.053 fS.   That’s a little larger than the value of 0.046 fS we 
obtained using the exact transfer function on the previous page.   The approximate expression given above is often good 
enough.   



Higher order filters

As we’ve seen with analog filters, selectivity requires more stages.   This is where digital filters come into their own 
since adding more stages is just a matter of more calculations.  As a simple example, consider the recursive filter defined by,

		yn = a1 yn −1 +a2 yn −2 + c0 xn
Substituting phasors as done earlier gives,

		
T f( ) = c0

1−a1e− i 2π f Δt −a2e− i 4π f Δt

Choose a2 = - (a1 )2/4 to obtain, 

		

T f( ) = c0

1− a12 e
− i 2π f Δt⎛

⎝⎜
⎞

⎠⎟

2

By expanding the exponential for frequencies much less than the Nyquist frequency we obtain, 

		

T f( )≈ c0

1− a12 1− i2π f Δt + ...( )⎛

⎝⎜
⎞

⎠⎟

2 =
c0

1−a1 2( )2
1

1+ i 4π a12−a1
f Δt

⎛

⎝⎜
⎞

⎠⎟

2 =
A

1+ i f f0( )2
f0 =

2−a1
4π a1

fS

This is a 2-pole filter with a cutoff frequency f0.    Going beyond these simple examples to find the filter coefficients for 
specific design requirements (number of poles, cutoff frequency, Butterworth, Chebyshev, etc.) is mathematically involved 
and requires something called the z-transform.   It’s interesting but, as they say, outside the scope of this discussion.  The 
good news is that there are programs in Matlab, Mathematica, LabView and so on that will work out the filter coefficients 
for you. 



Impulse response

If you work with digital filters you will encounter terms like FIR and IIR.  FIR is short for finite impulse response.
Consider an impulse xn = 1 sent to the digital filter at time tn.    For all other n , xn = 0.   Suppose the filter is nonrecursive and 
for the sake of argument, has just 2 terms:

		yn = c0 xn + c1 xn −1

		

yn = c0 xn + c1 xn−1 = c0
yn+1 = c0xn+1 + c1xn = c1
yn+2 = c0xn +2 + c1xn+1 =0
yn+3 =0 ,...

The outputs for n, n+1 and n+2 are,

For times corresponding to n+2 or later, the filter output is zero.  The response to the impulse is finite so it’s called an FIR 
filter.  No matter how many terms on the right side, a non-recursive filter will have a finite impulse response.  

Now consider the recursive filter,                                                 subject to the same impulse.   The outputs are,		yn = a yn −1 + c xn

		

yn = a yn−1 + c xn = c

yn+1 = a yn + cxn+1 = ac

yn+2 = a yn +1 + c xn+2 = a
2c

yn+3 = a
3c , etc.

The output never goes away.  If a < 1 then it just gradually 
dies away as time goes to infinity.  This type of filter is called IIR for 
infinite impulse response.   IIR filters generally require fewer 
computations to achieve the same filtering action as FIR filters so 
they are preferred in many cases.  However, since they involve 
feedback, they may be unstable. 



You’ll see diagrams like the one below that are essentially flow charts or schematics for digital filters.  Each box 
labeled z-1  corresponds to a delay of one sampling time.   The a’s are the filter coefficients and the circles with a cross 
indicate multiplication.  The little down arrows are sometimes called taps.  This diagram would correspond to the following 
FIR filter,

		
yn = ak xn − k

k=0

N

∑

yn

xn

This diagram, on the other hand, has feedback so it 
corresponds to an IIR filter:

		yn = b0 xn +b1 xn −1 +b2 xn−2 −a1 yn−1 −a2 yn−2

https://en.wikipedia.org/wiki/Digital_filter

The theory of digital filtering is rather mathematical.  A 
simple introduction, from which my discussion is taken, can 
be found in Digital Filters, by  R.W. Hamming.  Hamming was 
one of the pioneers of this subject and his book is 
characteristic of the Bell Labs style – doing as much as 
possible with minimal mathematics. 


