
Electronic Noise 

If you were to look at the voltage versus time across any resistor you 

would see something similar to the trace on the left.  This noise voltage is a 
fluctuating quantity whose time average over a sufficiently long time 
interval 𝑡𝑎𝑣  is zero.   

However, the average of V 2 (the mean squared value) is not zero: 
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For the vast majority of cases in electronics, it doesn’t matter when the 
time averaging begins so t0  is arbitrary.  When that’s true, the noise is 
called stationary.   We’ll assume that’s true from here on.   Assume for 
now that 𝑡𝑎𝑣  is much longer than any other characteristic time in the 
system.

There are different kinds of averaging for a physical system.  For example, from statistical mechanics we know that the avera ge squared 
velocity in an ideal gas is given by,
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This is an ensemble average, denoted by the brackets.   In this case the average is over a huge number of otherwise identical systems.   From 
that analysis we obtain a Maxwell-Boltzmann probability distribution 𝑃 𝑣  for the speed.  It’s not obvious that time and ensemble averages 
will always give the same answer and it depends on how long we do the time average for.   In an ideal gas, we’d need 𝑡𝑎𝑣   much larger than a 
typical collision time between molecules.     When the two averages do give the same answer the system is termed ergodic.  There is a large 
literature on this subject but we will assume it’s true and make use of both averages. 



To illustrate the two averages in an electronics context, imagine 
measuring the mean squared noise voltage at the output of a circuit.   The 

time average might be taken on the top trace with an averaging time tav. 

 

For the ensemble average, envision N identical circuits where N is huge.  
Now take a vertical cut any time t1.  The ensemble average is,
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Again, if the system is stationary it doesn’t make any difference what we 
choose for t1  so 𝑉2  is time independent.   

 Since the frequency domain makes the analysis of circuits so easy, 
we would like to use it to analyze noisy electronics.  For this we need a 
new quantity.   Imagine a s noise generator Vin(t) connected to a filter with 
a transfer function H( f ) .   For this filter, H = 1 if the frequency is between 
𝑓 and 𝑓 + Τ∆𝑓 2  , and H = 0 otherwise.  If ∆𝑓 ≪ 𝑓 then define the power 
spectral density 𝑆𝑖𝑛 𝑓  as, 

𝑉𝑜𝑢𝑡
2 = 𝑆𝑖𝑛 𝑓  ∆𝑓

The mean-squared output noise depends on the bandwidth of the filter.  
For an arbitrary filter, we’ll show that the output noise is,
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Nyquist Noise

 The noise voltage that appears across a resistor in thermal equilibrium is named after Harry Nyquist 
and John B. Johnson of Bell Telephone Labs.  Johnson identified it experimentally and Nyquist used statistical 
mechanics to explain its  origin. ( See, for example, wikipedia.org/wiki/Johnson%E2%80%93Nyquist_noise. )  
It is the electronic analog of black-body radiation.     

R
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The basic idea is shown above.  A resistor in equilibrium at absolute temperature T is connected to a filter that rejects all frequencies but 
those in a narrow band between f and f + Δ f .  Nyquist proved that the mean-squared noise on the output of this filter is given by,

𝑉𝑜𝑢𝑡
2 = 𝑆𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑓  ∆𝑓 = 4𝑘𝐵𝑇𝑅 ∆𝑓

As it stands, the spectral density of Nyquist noise is independent of frequency.  Noise of that variety is known as white noise.  In reality, 
there will be quantum corrections to the spectral density but they only appear at frequencies of order 𝑓 = Τ𝑘𝐵𝑇 ℎ where h is Planck’s 
constant.  At T = 300 K that corresponds to frequencies above 1012 Hz, which is much too high for conventional electronics.  For practical 
purposes, Nyquist noise has a constant spectral density.
 

𝑉𝑜𝑢𝑡



Nyquist noise is small but certainly observable.   Consider the noise across an R = 1 MΩ resistor at T = 300 K viewed with a filter of 
bandwidth Δ f  = 108 Hz, which is about the bandwidth of many oscilloscopes,

𝑉𝑜𝑢𝑡
2 = 𝑆𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝑓  ∆𝑓 = 4𝑘𝐵𝑇𝑅 ∆𝑓 = 1.66 𝑥 10−6 𝑉𝑜𝑙𝑡𝑠2

𝑉𝑅𝑀𝑆 = 𝑉𝑜𝑢𝑡
2 = 1.29 𝑥 10−3 𝑉𝑜𝑙𝑡𝑠

𝑉𝑜𝑢𝑡
2 = 4𝑘𝐵𝑇𝑅 ∆𝑓

Our ultimate goal is to estimate the noise in electronic circuits and 
compare it to the signal.   For noise calculations, any resistor R acts 
like a noiseless resistor R in series with a random voltage generator 
whose mean squared value is just the Nyquist expression.  We can’t 
predict the instantaneous voltages and currents in such a circuit but 
we can predict the mean squared values.   

Shot Noise

 Shot noise is a fluctuation in the current arising from the 
discreteness of charge.   It typically arises when the the charge 
must surmount an energy barrier as in a diode or transistor.   For 
reasons somewhat beyond the scope of this discussion, it does not 
appear in resistors.  In its simplest realization, shot noise is also 
white, with a spectral density 𝑆𝑠ℎ𝑜𝑡 = 2𝑞 𝐼 ,

𝐼𝑠ℎ𝑜𝑡
2 = 𝐼 − 𝐼 2 = 𝑆𝑠ℎ𝑜𝑡 ∆𝑓 = 2𝑞 𝐼 ∆𝑓

Here 𝐼  is the average current flowing, as determined by non-random (i.e., deterministic) voltage and current sources in the circuit.  q is the 
charge carrying the current.  Normally this would be just the charge e of an electron but in some exotic condensed matter systems (i.e., 
fractional quantum Hall effect)  q might be e/3.   Shot noise typically acts like a noisy current generator in parallel with the average current 
flow.  It’s important in things like photodiodes, as shown in the figure. 

𝐼𝑠ℎ𝑜𝑡
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Shot noise in ordinary circuits is rather small.  Consider an average DC current  < I > = 1 amp.  The charge q = e = 1.6 x 10-19 C.  Suppose we 
measure the current with an instrument of bandwidth Δf  = 102 Hz.  Then the root-mean-squared shot noise current is,

𝐼𝑠ℎ𝑜𝑡
2 = 2𝑒 𝐼  ∆𝑓  = 5.7 𝑥10−9 𝐴𝑚𝑝𝑠

Interestingly, you can measure the electronic charge e using shot noise.   Shot noise has been compared to what you hear under an umbrella in 
the rain.  There is an average rainfall hitting the umbrella, analogous to 𝐼  . The pinging sounds correspond to individual raindrops, which arrive 
in discrete amounts. 

1/f Noise

 Not all noise is white.   Flicker noise, sometimes called pink 
noise,  is seen in things ranging from the incidence of musical 
notes in a symphony to fluctuations in the Nile river height.  In 
semiconductor circuits, flicker noise voltage has a spectral density,  
 

𝑆 Τ1 𝑓~
1

𝑓𝛼  1 <  𝛼 < 2

When α ≈ 1 it’s called 1/f noise.   There is no universal explanation 
for it but charge jumping in and out of energy traps in a 
semiconductor will give rise to noise fluctuations with a similar 
spectrum.  The figure shows the difference between white noise 
and 1/f noise in the time domain.

time → 

White noise

1/f noise

1/f noise is difficult to reduce.  As you probably would guess, white noise can be reduced by averaging.  The longer you average the lower the 
noise.  That’s equivalent to reducing the bandwidth.  But if the noise has a 1/f spectrum then the longer your averaging time  the larger the 
fluctuations.    It’s therefore advisable, if possible, to work at frequencies well away from zero. 



The figure below shows the contributions of white noise and flicker noise in a typical amplifier.  Above some corner frequency, in this case 
about 1 kHz,  white noise dominates.    If possible, it's best to operate at frequencies above this value.  We’ll see how to do that with a lockin 
amplifier. 

Figure from https://www.edn.com/electronics-blogs/the-signal/4408242/1-f-Noise-the-flickering-candle-



From http://zone.ni.com/reference/en-XX/help/370051T-01/cvi/libref/analysisconcepts/noise_generation/

Probability distribution of white noise

 White noise passed through a filter generally has a Gaussian probability distribution.  The blue trace shows white noise voltage versus 

time.   If the output is sorted into bins according to voltage, the result is the yellow histogram.  It shows a Gaussian dist ribution with zero 
mean.  
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Correlation functions

 A noise voltage can’t be Fourier analyzed in the conventional sense since it’s random and goes on forever.   But we can say something 
about random signals at different points in time.   That involves the autocorrelation function, defined as,

𝑅𝑉 𝜏 = 𝑉 𝑡 + 𝜏  𝑉 𝑡 = 𝑉 𝜏  𝑉 0

This is the ensemble average of the product of a random 
voltage at two different times.  If the noise is stationary then 
the average depends only on the time 𝜏 between the two 
measurements.  

There are other basic properties of autocorrelation functions.
If 𝜏 = 0  then 𝑅𝑉 0 = 𝑉 𝑡  𝑉 𝑡 = 𝑉2  ≠ 0.   On the 
other hand, when 𝜏 → ∞ there should be no correlation 
between the two voltages so 𝑅𝑉 ∞ = 0 .   It also shouldn’t 
make any difference whether 𝜏 > 0  or 𝜏 < 0 .  Therefore the 
autocorrelation function for random noise generally obeys,

𝑅𝑉 𝜏 <  𝑅𝑉 0  ,  𝑅𝑉 −𝜏 =  𝑅𝑉 𝜏

These properties make 𝑅𝑉 𝜏  a mathematically well-behaved 
function.  For example, consider an RC low pass filter where 
the source of EMF is the Nyquist noise voltage of the resistor.  

We’ll show that the autocorrelation of the output across the 
capacitor is,

𝑅𝑉 𝜏 = 𝑉2  𝑒− Τ𝜏 𝑅𝐶

Voltages across the capacitor are correlated in time because 
the capacitor has a memory and it cannot charge or discharge 
instantaneously.   See F. Reif, Fundamentals of Statistical and 
Thermal Physics for a much more complete discussion. 
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Output from a noisy circuit

We want to find the spectral density from a circuit that has noisy elements like resistors.  Consider a linear circuit with a  transfer function H 
that’s driven by a noise generator 𝑉𝑖𝑛 𝑡  .   For example, the transfer function of the simple RC low pass filter is given by,

H𝑉𝑖𝑛 𝑡 𝑉𝑜𝑢𝑡 𝑡

𝐻 𝜔 =
1

1 + 𝑖 𝜔𝑅𝐶

In general, for any linear circuit we have,

෠𝑉𝑜𝑢𝑡 𝜔 = 𝐻 𝜔 ෡ 𝑉𝑖𝑛 𝜔

There’s a theorem from Fourier analysis that if a function is the product of two Fourier transforms then in the time domain it obeys,
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The integral on the left is called a convolution.   For example, 𝐻 𝑡  for the low pass filter is 𝐻 𝑡 = 𝜃 𝑡 Τ𝑒− Τ𝑡 𝑅𝐶 𝑅𝐶 where  is the unit step 
function.  Engineers refer to 𝐻 𝑡  as the impulse response function. 

Next, we need a theorem due to Wiener and Khinchine stating that the spectral density and the autocorrelation function are a Fourier 
transform pair,

     𝐽 𝜔 =
1

2𝜋
∞−׬

+∞
𝑅𝑉 𝜏 𝑒−𝑖𝜔𝜏 𝑑𝜏 𝑅𝑉 𝜏 = ∞−׬

+∞
𝑒𝑖𝜔𝜏 𝐽 𝜔 𝑑𝜔

𝐽 𝜔  is defined for both positive and negative frequencies.  However, since 𝑅𝑉 is an even function of 𝜏 then 𝐽 𝜔 = 𝐽 −𝜔  so it’s simply 
related to the spectral density S introduced earlier ,
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2 𝐽 𝜔 𝑑𝜔 = න
0

+∞

 𝑆 𝑓 𝑑𝑓 𝑆 𝑓 ≡ 4𝜋 𝐽 𝜔  

For the time being it’s more convenient  to use 𝐽 𝜔  since integrals over all frequency are easier.



With this connection, we need the autocorrelation function of the output, after which we’ll take its Fourier transform.  𝑉𝑖𝑛 𝑡  and 𝑉𝑜𝑢𝑡 𝑡   
are both random functions.  The autocorrelation function is now given by,  

𝑅𝑜𝑢𝑡 𝜏 = 𝑉𝑜𝑢𝑡 𝜏  𝑉𝑜𝑢𝑡 0 =  න
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∞

𝐻 𝑡′ 𝑉𝑖𝑛 𝜏 − 𝑡′ 𝑑𝑡′ න
−∞

∞

𝐻 𝑡” 𝑉𝑖𝑛 −𝑡” 𝑑𝑡” 

Now take the Fourier transform and use the fact that ensemble averages and integrals commute,
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But the correlation function only depends on the difference in times so define,

𝑢 ≡ 𝜏 − 𝑡′ − −𝑡” = 𝜏 − 𝑡′ − 𝑡”
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This now becomes the product of three integrals, 
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= 𝐻 𝜔 𝐻 −𝜔  𝐽𝑖𝑛 𝜔  = 𝐻 𝜔 𝐻∗ 𝜔  𝐽𝑖𝑛 𝜔 = 𝐻 𝜔 2  𝐽𝑖𝑛 𝜔



H (f)𝑉𝑖𝑛 𝑡 𝑉𝑜𝑢𝑡 𝑡

The final result is easy to remember,

𝐽𝑜𝑢𝑡 𝜔 = 𝐻 𝜔 2  𝐽𝑖𝑛 𝜔

Alternatively, we can write this in terms of the one-sided spectral 
densities,

𝑆𝑜𝑢𝑡 𝑓 = 𝐻 𝑓 2  𝑆𝑖𝑛 𝑓

1. Square filter.  Consider some noise source with a spectral density 𝑆𝑖𝑛 𝑓 .  Now send it through a 
filter with a transfer function,

𝐻 𝑓 = 1 ( 𝑓0 − Τ∆𝑓 2  < 𝑓 < 𝑓0 + Τ∆𝑓 2 ) , 𝐻 𝑓 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The mean squared noise on the output is given by,

𝑉𝑜𝑢𝑡
2 = 𝑅𝑜𝑢𝑡 0 = න

0

∞

𝑆𝑜𝑢𝑡 𝑓  𝑑𝑓 = න
0

∞

𝐻 𝑓 2 𝑆𝑖𝑛 𝑓  𝑑𝑓 = න
𝑓0− Τ∆𝑓 2

𝑓0 Τ∆𝑓 2

𝑆𝑖𝑛 𝑓  𝑑𝑓
𝑓0 − Τ∆𝑓 2 𝑓0 + Τ∆𝑓 2

If ∆𝑓 ≪ 𝑓0 then,       𝑉𝑜𝑢𝑡
2 = 𝑆𝑖𝑛 𝑓0  ∆𝑓

Again, this is the way to measure a power spectral density.  Send the noisy waveform through a narrow band filter and then measure the 
mean-squared output voltage. 

2. RC-filtered Nyquist noise.  Let’s revisit the RC circuit with the noisy resistor.   If the generator is the Nyquist noise of the resistor then,

𝑆𝑜𝑢𝑡 𝑓  𝑑𝑓 = 𝐻 𝑓 2 𝑆𝑖𝑛 𝑓  𝑑𝑓 =
4𝑘𝐵𝑇𝑅 𝑑𝑓

1 + 𝜔𝑅𝐶 2

H



Imagine you could measure this noise with an instrument that had infinite bandwidth and responded the same at all frequencies  (𝐻 𝑓 = 1).  
There is no such instrument, of course, but if there were, that instrument would measure a total means-squared output noise of,

𝑉𝑜𝑢𝑡
2 = න

0

∞

𝑆𝑜𝑢𝑡 𝑓  𝑑𝑓 = න
0

∞ 4𝑘𝐵𝑇𝑅 𝑑𝑓

1 + 𝜔𝑅𝐶 2  =
𝑘𝐵𝑇

𝐶
 →  

1

2
𝐶 𝑉𝑜𝑢𝑡

2  =
𝑘𝐵𝑇

2

The result is exactly what we could have predicted from the equipartition theorem of statistical mechanics:  In thermal equil ibrium, each 
quadratic term in the energy of a classical system has an average energy of  Τ𝑘𝐵𝑇 2  .    

𝑉𝑜𝑢𝑡 𝑡

𝑉𝑁𝑦𝑞𝑢𝑖𝑠𝑡

Finally, knowing 𝑉𝑜𝑢𝑡
2  we can go back and find the pre-factor for the autocorrelation 

function for the RC filter driven by Nyquist noise, 

𝑅𝑜𝑢𝑡 𝜏 = 𝑉𝑜𝑢𝑡
2  𝑒− Τ𝜏 𝑅𝐶 =

𝑘𝐵𝑇

𝐶
 𝑒− Τ𝜏 𝑅𝐶

𝐽𝑜𝑢𝑡 𝜔 =
1

𝜋

𝑘𝐵𝑇𝑅 

1 + 𝜔𝑅𝐶 2

𝑆𝑜𝑢𝑡 𝑓 = 4𝜋 𝐽 𝜔 =
4 𝑘𝐵𝑇𝑅 

1 + 2𝜋𝑓𝑅𝐶 2

The correlation function 𝑅𝑜𝑢𝑡 𝜏  for RC filtered Nyquist noise has, not surprisingly, a correlation time RC.    What about the Nyquist noise itself?  

𝑅𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝜏 = න
−∞

+∞

𝑒𝑖𝜔𝜏 𝐽𝑁𝑦𝑞𝑢𝑖𝑠𝑡 𝜔 𝑑𝜔 =
𝑘𝐵𝑇𝑅 

𝜋
න

−∞

+∞

𝑒𝑖𝜔𝜏 𝑑𝜔 = 2𝑘𝐵𝑇𝑅 𝛿 𝜏

Nyquist noise is white so its spectral density is constant as a function of frequency.   Its correlation function is therefore a delta function in time. 
Noise with a white spectrum has no correlation from one moment to the next.  



Noise in amplifiers

 Next, we’d like to see how to treat multiple noise sources in circuits.   Amplifiers are a useful example.  Even the simplest amp has 
many resistors and transistors so it quickly becomes very complicated to predict the noise with any reliability.  Instead, engineers use a 
model that takes account of the two irreducible noise generators – voltage and current noise.  We then connect the amplifier to external 
components and calculate the quantity that matters – the signal to noise ratio S/N.

en
in

Noisy amplifier

Noiseless amp 
       Gain = A

Vout

Vin

The model consists of a real (noisy) amp, inside of which is an ideal, noiseless amp of gain A.   All the amplifier noise is accounted for 

by the two sources denoted Vn and In .   Vn  is a voltage noise generator with spectral density Se = en
2 and In is a current noise generator with 

spectral density Si = in
2 .   The units are 𝑒𝑛~ Τ𝑉𝑜𝑙𝑡 𝐻𝑧  and Τ𝑖𝑛~𝐴𝑚𝑝 𝐻𝑧  .   en and in represent the sum total of all the noisy amplifier 

circuitry.   Roughly speaking they account for Nyquist noise and shot noise in the amplifier circuitry but their values depen d on the specific 
amplifier.  For simplicity I've assumed that the ideal amp has infinite input impedance and the gain A is just a constant.    After you go through 
this simple case you can always add a finite input impedance R in and make the gain complex A and frequency dependent.   

𝐼𝑛
2 = 𝑖𝑛

2 ∆𝑓

𝑉𝑛
2 = 𝑒𝑛

2 ∆𝑓

𝑉𝑛

𝐼𝑛



Now hook the amplifier up to a deterministic signal source VS which, like all signal sources, has some output impedance R.   We must include 
the Nyquist noise of R  so there are 3 noise generators corresponding to noise voltages 𝑉𝑅 , 𝑉𝑛  and a noise current 𝐼𝑛.   Now use 
superposition.

1. Turn off all the noise sources.  𝑉𝑅 , 𝑉𝑛 become short circuits and 𝐼𝑛 becomes an open circuit.   The ideal amp has infinite input impedance 
so no current flows through R and the output is just, 

𝑆𝑖𝑔 = 𝑂𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 = 𝐴 𝑉𝑆

2. Now turn off VS , 𝑉𝑛 , 𝐼𝑛 . Then the instantaneous output from the Nyquist noise generator is, 

𝑉𝑜𝑢𝑡
𝑅 = 𝐴 𝑉𝑅

Where VR is the random Nyquist voltage noise from R.  

3. Turn off everything except 𝑉𝑛.   Its output contribution is, 

𝑉𝑜𝑢𝑡
𝑛 = 𝐴 𝑉𝑛

Gain = A

Vout𝐼𝑛

𝑉𝑅

𝑉𝑛
R



4. Finally, turn off everything except 𝐼𝑛  .  The ideal amplifier has infinite input impedance so 𝐼𝑛 goes back through the resistor R and generates 
a noise voltage 𝐼𝑛𝑅𝑆 .  This voltage is multiplied by A to produce an output voltage of,

𝑉𝑜𝑢𝑡
𝐼 = 𝐴 𝐼𝑛𝑅𝑆

The total instantaneous output noise voltage is,

𝑉𝑜𝑢𝑡 = 𝐴 𝑉𝑅 + 𝑉𝑛 + 𝐼𝑛𝑅𝑆

This quantity is random so look at its autocorrelation function,

𝑅𝑜𝑢𝑡 𝜏 = 𝑉𝑜𝑢𝑡 𝑡 + 𝜏 𝑉𝑜𝑢𝑡 𝑡

𝑅𝑜𝑢𝑡 𝜏 = 𝐴2 𝑉𝑅 𝑡 + 𝜏 𝑉𝑅 𝑡 + 𝐴2 𝑉𝑛 𝑡 + 𝜏 𝑉𝑛 𝑡 + 𝐴2 𝑅𝑆𝐼𝑛 𝑡 + 𝜏  𝑅𝑆𝐼𝑛 𝑡 + 𝑪𝒓𝒐𝒔𝒔 𝒕𝒆𝒓𝒎𝒔

The cross terms are things like 𝑉𝑅 𝑡 + 𝜏 𝑉𝑛 𝑡  𝑜𝑟 𝑉𝑛 𝑡 + 𝜏 𝑅𝑆𝐼𝑛 𝑡   .   But these are all zero.   There is no reason for the resistor Nyquist 
noise to be correlated with the amplifier current noise, for example.  So all the noise comes from the autocorrelation functions of the 3 
independent noise sources:

𝑅𝑜𝑢𝑡 𝜏 = 𝐴2 𝑉𝑅 𝑡 + 𝜏 𝑉𝑅 𝑡 + 𝐴2 𝑉𝑛 𝑡 + 𝜏 𝑉𝑛 𝑡 + 𝐴2𝑅𝑆
2 𝐼𝑛 𝑡 + 𝜏  𝐼𝑛 𝑡

This implies that the power spectra of the individual , uncorrelated noise sources  just add.  The mean-squared output noise in a bandwidth ∆𝑓  
is then given by, 

𝑉𝑜𝑢𝑡
2 = 𝑆𝑜𝑢𝑡 𝑓  ∆𝑓 =  𝐴2  4𝑅𝑘𝐵𝑇 + 𝑒𝑛

2 + 𝑅𝑆
2 𝑖𝑛

2  ∆𝑓

Suppose the signal source has a mean-squared amplitude 𝑉𝑆
2.   It gets multiplied by the same factor of A2 as the noise.   The output signal to 

noise ratio is given by, 

𝑆𝑖𝑔

𝑁
=

𝑉𝑆
2

𝑉𝑜𝑢𝑡
2 =

𝑉𝑆

4𝑅𝑘𝐵𝑇 + 𝑒𝑛
2 + 𝑅𝑆

2 𝑖𝑛
2  ∆𝑓



Examples

 Typical values for the amplifier noise sources are en ≈ 10-9 - 10-8  V/(Hz)1/2  and in ≈ 10-12 – 10-14  A/(Hz)1/2  .    Let’s look at two examples 
using the circuit just analyzed.

Case 1.   en = 10 nV/(Hz)1/2    in = 1 pA/(Hz)1/2    R = 100 Ω.   The 3 noise sources give,

𝑒𝑛
2 = 10−16 𝑖𝑛

2𝑅𝑆
2 = 10−20 4𝑅𝑘𝐵𝑇 = 10−20

In this case the amplifier voltage noise en dominates.   Suppose we look at the output voltage with an instrument whose bandwidth ∆𝑓 =
104 𝐻𝑧.  The RMS voltage noise will be,

𝑉𝑅𝑀𝑆 = 4𝑅𝑘𝐵𝑇 + 𝑒𝑛
2 + 𝑅𝑆

2 𝑖𝑛
2  ∆𝑓 ≈ 10−6 𝑉

In order to see a signal we would require  𝑉𝑆 > 10−6 V .

Case 2.   en = 10 nV/(Hz)1/2    in = 1 pA/(Hz)1/2    but now suppose the source resistor R = 1 MΩ.   The noise contributions are now,

𝑒𝑛
2 = 10−16 𝑖𝑛

2𝑅𝑆
2 = 10−12 4𝑅𝑘𝐵𝑇 = 10−14

    
This time, the current noise of the amplifier flowing through the source resistor R dominates the noise.  With the same ∆𝑓 = 104 𝐻𝑧  we have,

𝑉𝑅𝑀𝑆 = 4𝑅𝑘𝐵𝑇 + 𝑒𝑛
2 + 𝑅𝑆

2 𝑖𝑛
2  ∆𝑓 ≈ 10−4 𝑉

This time the signal voltage needs to be greater than 10−4 𝑉 to be observable. 

From these examples you can see that noise depends not only on the amplifier itself but by the source resistance R of the circuit driving it. By 
far, the most common way to reduce noise is to decrease the bandwidth ∆𝒇 . 



Rules for circuit noise analysis

Now that you’ve seen how it goes you don’t need all the correlation functions and Fourier transforms.  For uncorrelated noise  
sources, the rules are basically,

a. Using superposition and phasors, find the the transfer function H(f) for each noise source, treated just as if it were an 
ordinary harmonic source.  

b. Convert each output noise contribution into its corresponding spectral density using  𝑆𝑜𝑢𝑡 𝑓 = 𝐻 𝑓 2  𝑆𝑖𝑛 𝑓  .

c. Add the spectral densities to get the total mean-squared noise on the output in a given bandwidth ∆𝑓 .

Noise Figure

 It’s often useful to have a figure of merit for amplifier noise.  Referring to the amplifier circuit we just analyzed, take the ratio of the 
total output noise to the Nyquist noise from R alone:

𝐹 =
𝑉𝑜𝑢𝑡

2

𝑉𝑁𝑦𝑞𝑢𝑖𝑠𝑡
2

=
4𝑅𝑘𝐵𝑇 + 𝑒𝑛

2 + 𝑅𝑆
2 𝑖𝑛

2  ∆𝑓

4𝑅𝑘𝐵𝑇 ∆𝑓
= 1 +

𝑒𝑛
2

4𝑅𝑘𝐵𝑇
+

𝑅 

4𝑘𝐵𝑇
𝑖𝑛

2

Vout

𝐼𝑛

𝑉𝑅

𝑉𝑛𝑅

Note that the gain and bandwidth cancel out in this 
ratio.  It is generally quoted in decibels and called the 
noise figure (NF),

𝑁𝐹 𝑑𝐵 = 10 𝑙𝑜𝑔10𝐹

A noiseless amplifier would have NF = 0 dB.  NF 
depends on the source resistance R.   In high 
frequency amps NF is typically quoted for R = 50 
Ohms.   Low noise amps for cellular communications 
often have NF < 1 dB. 



The presence of R in the noise figure can lead to confusion.   For example, we can minimize NF with respect to R and obtain,

𝑑𝐹

𝑑𝑅
= 0 → 𝑅 =

𝑒𝑛

𝑖𝑛

If R were smaller than en/in , you might be tempted to add resistance until the total source resistance = en/in .  However, increasing the 
source resistance just adds Nyquist and I2R current noise to the total noise.   In order satisfy the above equation, you would need to 
transform the resistance R using a noiseless transformer.   Sometimes this works, particularly for low frequencies, but transformers are 

heavy, complicated and often not worth the effort.

Noise temperature

Noise temperature is another figure of merit for amplifiers.   To see how it works consider 2 thought experiments.

Case 1. Take the circuit below, imagine cooling just R down to T = 0 but keeping its resistance the same.   In that case, the Nyquist noise VR 
vanishes. The noise from the amp (gain = A) in a bandwidth Δf  is,

𝑉𝑜𝑢𝑡
2 = 𝐴2  𝑒𝑛

2 + 𝑅2𝑖𝑛
2 ∆𝑓 𝑇 = 0

T = 0

𝑉𝑛
𝐼𝑛

𝑅

𝑉𝑜𝑢𝑡

𝑉𝑅 = 0



The noise temperature TN of the real (noisy) amplifier is defined by setting the noise for case 1 equal to the noise from case 2:  

4𝑘𝐵𝑇𝑁𝑅 =  𝑒𝑛
2 + 𝑅2𝑖𝑛

2

TN is the temperature at which the Nyquist noise from R alone would equal the noise coming only from the amplifier itself 
connected to a noiseless R.  It is not the actual temperature of the amplifier!   In fact, very quiet preamps often have noise a 
temperature TN well below the physical T of the amplifier.  It’s easy to show that noise temperature and noise figure are related:

𝑁𝐹 = 10 𝑙𝑜𝑔10 1 +
𝑇

𝑇𝑁

Case 2. Instead, grab a perfectly noiseless amp with the same gain and connect it to R .   But now, heat R up to some temperature TN.   Now the 
total noise from the amplifier is just the amplified Nyquist noise from R:    

𝑒𝑛 , 𝑖𝑛 = 0 → 𝑉𝑜𝑢𝑡
2 = 𝐴2 4𝑘𝐵𝑇𝑁𝑅 ∆𝑓

TN

𝑉𝑛 = 0

𝐼𝑛= 0

𝑅

𝑉𝑜𝑢𝑡

𝑉𝑅 ≠ 0



Importance of preamps

 Low noise electronics generally involves a carefully designed low noise preamp as the first stage.   Later stages may be designed for 
power output rather than low noise.   To see why, consider the two-stage circuit shown below.  The first amp has gain A1 along with voltage and 
current noise densities en1 and in1.   The second stage has A2, en2 and in2.  R0 is the output impedance of the first stage, which is typically small.

Again, we can do this by superposition and then just add up the mean squared voltages from all the sources.  The second ampli fier stage 
multiplies all the voltages (noise and signal) from stage 1 and then adds noise of its own.   The the output noise voltage from the chain of 
amplifiers is, 

𝑉𝑜𝑢𝑡
2 𝑛𝑜𝑖𝑠𝑒 = 𝐴1

2𝐴2
2 4𝑅𝑘𝐵𝑇 + 𝑒𝑛1

2 + 𝑅2𝑖𝑛1
2 ∆𝑓 + 𝐴2

2 4𝑅0𝑘𝐵𝑇 + 𝑒𝑛2
2 + 𝑅0

2𝑖𝑛2
2 ∆𝑓

The signal to noise ratio is given by,

𝑆𝑖𝑔

𝑁

2

=
𝐴1

2𝐴2
2 𝑉𝑆

2

𝐴1
2𝐴2

2 4𝑅𝑘𝐵𝑇 + 𝑒𝑛1
2 + 𝑅2𝑖𝑛1

2 ∆𝑓 + 𝐴2
2 4𝑅0𝑘𝐵𝑇 + 𝑒𝑛2

2 + 𝑅0
2𝑖𝑛2

2 ∆𝑓 

𝑒𝑛1 𝑒𝑛2

𝑉𝑜𝑢𝑡

𝑅
𝑉𝑅

𝑖𝑛1
𝑖𝑛2

𝑅𝑜
𝑉𝑅0



Or,

𝑆𝑖𝑔

𝑁

2

=
𝑉𝑆

2

4𝑅𝑘𝐵𝑇 + 𝑒𝑛1
2 + 𝑅2𝑖𝑛1

2 ∆𝑓 +
1

𝐴1
2 4𝑅0𝑘𝐵𝑇 + 𝑒𝑛2

2 + 𝑅0
2𝑖𝑛2

2 ∆𝑓 

Notice that the noise coming from the second stage is reduced by 1/A1
2 where A1 is the gain from the first stage, i.e., the preamp.  

Therefore, if the preamp has high gain and low noise, it dominates the overall signal to noise ration of the amplifier chain.  Even within the 
preamp itself,  the noise is often dominated by the input stage transistors.   
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