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I’m going to follow the development of the subject as presented in 

Mechanics, 3rd edition, K. R. Symon, Addison-Wesley Publishing, 

1971.  See chapter 8, sections 6-9.  

 

Another good reference is Lectures in Elementary Fluid Dynamics: 

Physics, Mathematics and Applications, J.M. McDonough, 

Departments of Mechanical Engineering and Mathematics, 

University of Kentucky, Lexington, KY (2009): 

http://www.engr.uky.edu/~acfd/me330-lctrs.pdf . 

 

————  ———— 

 

Utility of conservation laws in fluid dynamics 

Many (most ??) of the useful equations in fluid dynamics come 

about because of various conservation laws.  We’ll only deal with 

non-relativistic fluids, so we’ll always have one set of equations 

which comes about because mass is conserved; if the density in a 

fluid at some point in space increases/decreases, it must be 

associated with a net inflow/outflow of stuff from that point in 

space. 

 

Schematically: 

http://www.engr.uky.edu/~acfd/me330-lctrs.pdf
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Other conservation laws which might be useful: 

 

 Perhaps momentum conservation? We’d want to work out a 

way to say something like this: “momentum inside the 

volume element dV  can only change when (more/less) 

momentum enters the box than leaves it.” 

 

 Maybe conservation of energy?  This one’s more 

complicated since if you compress some collection of 

particles in the fluid, you do work on them, increasing their 

potential energy.  Also, if the fluid flows uphill (against the 

earth’s gravitational field), its potential energy changes. 

 

An added piece of complication comes about because there are two 

kinds of derivatives that we’ll be interested in.  We might want to 

know how, for example, the pressure at a fixed point changes with 

time.  But we also might want to know about the rate of change of 

dm dV dm decreases 

in out 
dV dV 
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the pressure at a point which moves along with the fluid.  For 

example, a “chunk” of air moving over an airfoil will show 

condensation fog if it is humid and the pressure drops suddenly, 

cooling the air.   

 

————  ———— 

 

Partial derivatives and convective derivatives 

This is a natural place to consider the difference between partial 

and total derivatives. 

 

“Laminar” (non-turbulent, layered) air flow over a wing might 

look like this: 

 

At the point A, fixed to remain in front of the airfoil, the pressure 

will be constant in time.  The same is true at point B.  Since we’re 

talking about holding x, y, z constant, if the pressure is a function 

of x, y, z, t  (let’s call it P(x, y, z, t) ), we can write 

 

A B 



Physics 525  University of Illinois 

An introduction to fluid dynamics 

©2024 University of Illinois 01-5  

 

point A

0
P

t





  and   

point B

0
P

t





. 

 

Since P is a function of four variables, we need to specify (by 

taking a partial derivative) that all but t are being held fixed in our 

description of the behavior of the pressure at points A and B.  

 

A group of air molecules in a small volume element that flows 

from point A to point B will experience a changing pressure since 

the local air pressure goes up as the air “gets crowded” in front of 

the air foil’s leading edge then drops as the air moves over the 

upper surface of the wing. We would like to be able to describe 

this kind of thing too. Let’s investigate. 

 

From the chain rule, the total derivative of P is 

 

   
dP P P dx P dy P dz

dt t x dt y dt z dt

   
   

   
 . 

 

Note the partials of P, but the total derivatives for x, y, z with 

respect to time.  What we’re doing, in effect, is declaring how we 

want to move around in space by saying we’ll cruise around with 

the same velocity as the average fluid velocity of a particular tiny 
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fluid packet.  We’ll then figure out how P changes with time in the 

packet which moves with (changing) velocity 

ˆ ˆ ˆ     
dx dy dz

v x y z
dt dt dt

   . 

 

Recall:  ˆ ˆ ˆ
P P P

x y z P
x y z

  
   

  
  (see the math review) 

 

As a result, we can write 

dP P
v P

dt t


  


. 

 

This is handy: it lets us say how the pressure changes if we move 

around with velocity v  inside the fluid volume. Sometimes 

(usually??) we’ll choose the velocity to be the same as the local 

fluid flow velocity. Symbolically, we can write 

 

 .
d

v
dt t


  


  

 

This quantity is nothing more than the total (time) derivative 

operator for a function that depends on x, y, z, and t. It is 

sometimes referred to as the “convective derivative,” “Stokes 
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derivative,” “Lagrangian derivative,” or any one of a number of 

other names. 

 

More on this: imagine we’re in a submarine, measuring the water 

temperature T(x,y,z,t) as we motor along. If we come to a stop and 

measure how the temperature changes with time, we’ll be 

determining the partial derivative of T: T t   since we’re holding 

x, y, z fixed by halting the submarine. 

 

If we don’t stop our submarine, the rate of change of the 

temperature will depend on how much the temperature varies from 

place to place (and how quickly we’re moving around), as well as 

any built-in time dependence, for example, from the sun heating 

the ocean during the day. 

 

Taking both the “built-in” and position-related effects into account, 

we’ll measure  

   
   

, , , , , ,
, , ,

dT x y z t T x y z t
v T x y z t

dt t


  


 

with v  the velocity of our submarine. 

 

We might want our submarine to cruise along with the same 

velocity as the water around us (in that case, we’ll get to observe 
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the behavior of the temperature of the same water molecules all 

day long), but we aren’t required to do this for the above equation 

to hold. 

 

If the sun isn’t shining (so there’s nothing heating the water) and 

the ocean current flows steadily, without change (so we don’t 

suddenly have cold water from the bottom blasting past us), we’ll 

expect the temperature at a fixed point in the ocean to remain 

unchanged. In that case, 0T t    so that we’ll only sense a 

change in the temperature if we change our position:  

 
 

, , ,
, , ,

dT x y z t
v T x y z t

dt
  . 

 

————  ———— 

 

Conservation of mass 

Let’s work up a differential equation that expresses the idea that 

mass is neither created nor destroyed in our fluid. 

 

We will investigate the inflow/outflow of mass in a small volume 

dV dxdydz  at the point x, y, z.  (I’m only going to draw it in two 

dimensions, to simplify the picture.) 
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I’ve drawn the fluid flow so that the fluid’s velocity into the box 

from the bottom and left sides is greater than the velocity out of the 

box through the top and right sides.  As a result, we expect fluid to 

build up in the box, so the density should increase. 

 x 

 y 

x 

y 

 x 

 y 

z 

(𝑥,  𝑦 +
Δ𝑦

2
,  𝑧 +

Δ𝑧

2
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2
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Δ𝑥 

Δ𝑦 

Δ𝑧 
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We can take as the average fluid velocity for the fluid that enters 

the left side of the box the exact fluid velocity at the center of the 

left side:  

, ,
2 2

left

y z
v v x y z

  
   

 
. 

The volume of fluid that flows into the box from the left side 

during time dt is shown as a shaded region in the following 

diagram. 

 

 

 

The volume of the region of fluid that flows into the left side of the 

box is approximately  

 

x 

y 

ˆ
leftv xdt
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ˆ ˆ, ,
2 2

left

y z
v xdt y z v x y z xdt y z

               
 

 

since the thickness of it in the x direction is ˆ v dt x .   

 

The volume that flows in from the bottom is  

ˆ, ,
2 2

x z
v x y z ydt x z

  
     

 
.  

 

The volume that flows out the top is 

ˆ, , .
2 2

x z
v x y y z ydt x z

  
       

 
 

 

 

The volume that exits the right side is 

ˆ, ,
2 2

y z
v x x y z xdt y z

  
       

 
. 

 

The mass which flows in from the left is the product of the local 

density and the in-flowing volume: 

 

ˆ, , , , , ,
2 2 2 2

left

y z y z
dm x y z t v x y z t xdt y z

      
          

   
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Note that I’m approximating density and velocity for the left side 

using the value of  and v  at the center of the left face of the 

volume element. 

 

Adding up the in-flowing and out-flowing mass for all six faces of 

the volume element (and omitting explicit time dependence, to 

save myself the effort of writing “, t” everywhere) gives 

 

, , , ,
2 2 2 2

, , , ,
2 2 2 2

, , , ,
2 2 2 2

, , , ,
2 2 2 2

x

x

y

y

y z y z
dm x y z v x y z dt y z

y z y z
x x y z v x x y z dt y z

x z x z
x y z v x y z dt x z

x z x z
x y y z v x y y z









      
         

   

      
             

   

      
         

   

      
           

   

, , , ,
2 2 2 2

, , , ,
2 2 2 2

z

z

dt x z

x y x y
x z v x z dt x y

x y x y
x z z v x z z dt x y





 

      
         

   

      
             

     

 

Note that the difference of the first two terms can be rewritten: 
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   

, , , ,
2 2 2 2

, , , ,
2 2 2 2

, , , , , ,
.

x

x

x

y z y z
x y z v x y z dt y z

y z y z
x x y z v x x y z dt y z

x y z t v x y z t
dtdxdydz

x







      
        

   

      
             

   

   
 



 

 

We can write similar expressions for the other two pairs of terms to 

conclude 

   

 .

yx z
vv v

dm dtdxdydz
x y z

dtdxdydz v

 



    
    

    

   

 

 

Recall that the mass inside the small box with volume 

dV dxdydz  is  , , , .m x y z t dxdydz  

 

Since we’re evaluating things for a stationary volume element at 

the point x, y, z  with side lengths dx, dy, dz we can say that the 

total time derivative of the mass inside the volume is 

 

   
fixed

, , , , ,

, , , , , ,

x y z dx dy dz

d x y z t dxdydz x y z tdm
dxdydz

dt dt t

    
 


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because that’s what we mean by taking a partial derivative: we 

hold all the variables except one fixed.   

 

But we also know that  dm dtdxdydz v     so it must be true 

that  

 
dm

v dxdydz
dt

   . 

 

As a result, we can write  

 

 
 

, , ,x y z tdm
dxdydz v dxdydz

dt t





   


 

 

so that 

 
 

, , ,x y z t
v

t





  


 

or 

 
 

, , ,
0 (fixed , , )

x y z t
v x y z

t





  


 

 

This equation expresses the fact that mass is conserved in our fluid, 

even though density and velocity of flow can change with time. 

Keep in mind that I worked this up using a volume element dV that 
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was fixed in space: with x, y, z held constant, our time derivative is 

a partial derivative t  , not a total derivative d dt . 

 

————  ———— 

 

Current density and the mass in a macroscopic volume 

We can describe the change in mass contained in a macroscopic 

volume V by integrating the above expression: 

 , , ,
V

M x y z t dV   

so 

 

 
 

, , ,

, , ,

V

V V

dM d
x y z t dV

dt dt

x y z t
dV v dV

t






 
  

 


   





 

 

 

Are you familiar with the divergence theorem? If so, you’ll recall 

that, for any vector field  , , ,J x y z t , 

   
  

, , , , , ,
closed surface volume enclosed

J x y z t dA J x y z t dV     . 
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By identifying v J   we can rewrite  
V

v dV   as 

A

v dA    and conclude that   
V A

dM
v dV v dA

dt
        . 

 

The quantity v  is the mass current density flowing in the fluid.  

 

The integral over a closed surface of the current density flowing 

through the surface tells us the rate at which mass is entering (or 

leaving) the volume. 

 

Example 1: 

 

Consider air flowing from a tube with cross-sectional area 𝐴1 into 

a region with cross-sectional area 𝐴2. In a steady air flow, dM/dt=0 

and so 𝜌𝑣1𝐴1 = 𝜌𝑣2𝐴2. We have  

𝑣2 =
𝐴1
𝐴2
𝑣1 
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Example 2: Consider water in the following container. 

 

There is a small hole at the bottom of the container and water leaks 

out from the hole at speed v. The water’s height y decreases. 

Mass of water in the container, 𝑀 = 𝜌𝑉, where V is the volume of 

the water. We have  

𝑑𝑀

𝑑𝑡
= 𝜌

𝑑𝑉

𝑑𝑡
=  −𝜌𝑣𝐴ℎ , 

where 𝐴ℎ is the area of the hole at the bottom. Let A(y) be the 

cross-sectional area of the container at height y. Then 

𝑑𝑉

𝑑𝑡
= 𝐴(𝑦)

𝑑𝑦

𝑑𝑡
 

Hence we have  

𝑑𝑦

𝑑𝑡
= −

𝐴ℎ
𝐴(𝑦)

𝑣 
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————  ———— 

 

Density changes in a “comoving” frame 

If we wanted to discuss the rate of change of density of the fluid as 

we move along with it, we could use the expression for the 

“convective derivative” from some pages back: 

d
v

dt t


  


. 

 

As long as we plug in the velocity v  that corresponds to the 

(moving) point in the fluid we’re observing, we’ll learn something 

useful. 

 

We want to calculate an expression for the total derivative d dt , 

so let’s use the connection between convective and partial 

derivatives, above: 

d
v

dt t

 



  


. [1] 

We’ve already figured out how the partial time derivative of  

(when we’re holding x, y, z fixed) behaves: 

 v
t





  


.  [2] 
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It comes from conservation of mass: if the density is decreasing at 

a particular point, there has to be an outflow of matter from that 

point.  (The outflow is what the divergence is telling us about.) 

  

Use the result in [2] to replace the first term to the right of the “=” 

in [1]: 

   
d

v v
dt


        [3] 

or 

    0
d

v v
dt


       . 

 

Now,   

       

 

x y z

yx z
x y z

v v v v
x y z

dvdv dvd d d
v v v

dx dx dy dy dz dz

v v

   

  
  

 

  
    

  

    
         

    

     

 

            

so I can rewrite    
d

v v
dt


         (this was equation [3]) 

as 
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 
d

v v v
dt

v


  



        

   

 

or 

0          (moving along with fluid)
d

v
dt


    . [4] 

 

That’s what we wanted: as we cruise along with the fluid, we’ll see 

the density changing in accord with this equation. The physical 

meaning is straightforward: if we see atoms in our fluid streaming 

out from a point (so that the divergence of the velocity is non-

zero), we’ll expect to see the fluid’s density at that point changing 

with time. 

For an incompressible fluid, 
𝑑𝜌

𝑑𝑡
= 0. So we have ∇ ⋅ 𝑣⃗ = 0. 

 

————  ———— 

       

  

Equations of motion for an ideal fluid 

Let’s assume for the moment that we’re working with a fluid that 

has zero viscosity, so that one layer of fluid sliding past another 

layer of fluid does not exert a force on the other layer, attempting 
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to drag it along. In the language of fluid mechanics, there is no 

shear stress exerted by one layer moving across another layer. 

 

Shear stress is defined as the force per unit area that one layer 

exerts on another layer. “Ideal fluids” do not “support” shear 

stresses. 

 

The net force acting on a small volume element can come from 

two sources: a “body force” (for example, gravity) and a pressure 

gradient that makes the force on one side of the volume element 

different from the force on the opposite side of the volume 

element.  

 

Let’s say the volume is  dV dxdydz  for a small rectangular solid 

in the fluid.  The areas of the six faces are dxdy, dydz, and so forth. 
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The force associated with pressure on the face centered at 

, ,
2 2

dy dz
x y z

 
  

 
 is  , ,

2 2

dy dz
P x y z dydz
 

  
 

 since force is the 

product of pressure and area. 

 

The net force associated with pressure in the x direction is 

, , , ,
2 2 2 2

.

dy dz dy dz
P x y z dydz P x dx y z dydz

P
dxdydz

x

   
        

   


 



 

since the pressure on the right-side face creates a push to the left. 

 

 x 

 y 

z 

, ,
2 2

dy dz
x y z

 
  

 

, ,
2 2

dy dz
x dx y z

 
   

 
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Consequently, we can write the net force, associated with changes 

in pressure across the volume element, as 

 

 

ˆ ˆ ˆy z

.  

gradient

P P P
F x dxdydz

x y z

P dV

   
    

   

 

 

 

If the gravitational force acting on dV is to be included, we’ll have 

an additional piece to incorporate which is  mg dV g . 

 

The equation of motion for the volume element dV is just F ma , 

or  F dV dv dt  so  

     +
dv

dV P dV dV g
dt

    

 

Note that v  refers to the velocity of our tiny volume of fluid, since 

we’re referring to how this velocity changes when there are 

unequal pressures on opposite sides of the small volume element. 

 

We can rewrite the last equation as  
dv

P g
dt

    , or   
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dv P
g

dt 


  . 

Keep in mind that the pressure P appears in this equation because 

gradients in pressure will cause unequal forces to be exerted on 

opposite sides of our tiny volume, causing it to accelerate. 

 

The equation lets us relate density, the pressure gradient, and the 

acceleration of a packet of fluid as it moves along. It’s just telling 

us that force is mass times acceleration, nothing more. If the fluid 

is viscous, there’ll be additional terms associated with viscous 

forces acting on our small packet of fluid. 

 

We can write a new version of this describing what happens at a 

fixed point (as opposed to what happens to a particular group of 

molecules in the tiny volume that flows from place to place) by 

using our convective derivative since that’ll let us get to .v t   

 

Use 
d

v
dt t


  


 to rewrite the previous equation as 

.
v P

v v g
t 

 
   


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Now we have an equation with a partial derivative. In the case that 

the flow is steady, so that the behavior of the (moving) fluid at one 

point in space doesn’t change, we’ll have   .v v P g    

      

Here’s what I mean by the curious term v v  (curious because 

we appear to be taking the gradient of a vector, instead of a scalar). 

It is perhaps more clearly expressed as  v v : 

 

 

ˆ

ˆ

ˆ.

x y z

x x x
x y z

y y y

x y z

z z z
x y z

v v v v v v
x y z

v v v
v v v x

x y z

v v v
v v v y

x y z

v v v
v v v z

x y z

   
    

   

   
   

   

   
   

   

   
   

   

 

 

The equation 
v P

v v g
t 

 
   


 is referred to as Euler’s 

equation of motion for a moving fluid subject to a gravitational 

force. It is nonlinear due to the presence of the v v  term. 

————  ———— 
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Conservation laws 

We worked up the equations some pages back to express the fact 

that mass is conserved in our fluid. 

 

Let’s try for a conservation-of-momentum equation now.  Start 

with this equation that I had derived for a non-viscous fluid: 

 

.
dv P

g
dt 


   

 

This describes the relationship between velocity, pressure, density,  

and the gravitational acceleration for a point moving along with the 

fluid, and not at a fixed x, y, z.  That’s because we have a total 

derivative dv dt , not a partial derivative, v t  , as had been used 

in Euler’s equation of motion.  

 

For a particular set of molecules in the fluid (we tag them, and 

keep track of them), the volume they occupy will increase when 

the density decreases, and decrease when the density increases.  

The mass of this particular small set of molecules is dm; they 
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occupy volume dV and have density  .  We have dm dV ; 

since we’re keeping track of what these particular molecules are 

doing as they flow along, dm will be constant as long as we don’t 

loose track of any of them.  As a result, dV  is constant. 

 

Multiply our equation  
dv P

g
dt 


   by dV  to write 

 

 
dv

dV P dV gdV
dt

    . 

 

Because  dV   is constant, we can put it inside the time 

derivative: 

    .
d

vdV g P dV
dt

    

Note that vdV  is the momentum carried by the particular set of 

molecules we’re watching.  Keep in mind that both   and dV  

change as the fluid flows. 

 

If we integrate over a finite volume, we can write 
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 
volume volume

d
vdV g P dV

dt
 

 
  

 
  . 

 

I mentioned the divergence theorem some pages ago: 

 

   
  

, , , , , ,
closed surface volume enclosed

J x y z t dA J x y z t dV     . 

 

There’s a generalized version of this that says: 

 

volume  surface

PdV PdA   . 

 

As a result, we can rewrite the equation  

 
volume volume

d
vdV g P dV

dt
 

 
  

 
   

as 

volume volume surface

  .
d

vdV gdV PdA
dt

 
 

  
 
    

   



Physics 525  University of Illinois 

An introduction to fluid dynamics 

©2024 University of Illinois 01-29  

 

surface

PdA  is just the net force acting on a macroscopic volume of 

fluid associated with changes in pressure over the surface of the 

fluid.   

 

This equation serves as a statement about momentum conservation 

in our fluid. 

————  ———— 

Hydrostatics 

Consider a special case where the fluid is static so that the fluid 

velocity 𝑣⃗ = 0 everywhere. The conservation of momentum 

equation  

𝑑𝑣⃗

𝑑𝑡
+
∇⃗⃗⃗𝑃

𝜌
= 𝑔⃗ 

reduces to  

∇⃗⃗⃗𝑃 = 𝜌𝑔⃗ 

which is the equation of hydrostatic equilibrium. This equation 

tells us that the pressure gradient is parallel to the direction of 

gravity 𝑔⃗ and so the surfaces of constant pressure (isobars) are 

perpendicular to 𝑔⃗. Since ∇⃗⃗⃗ × ∇⃗⃗⃗𝑃 = 0, taking the curl of the 

equation of hydrostatic equilibrium yields 

0 = ∇⃗⃗⃗ × ∇⃗⃗⃗𝑃 = ∇⃗⃗⃗ × (𝜌𝑔⃗) = ∇⃗⃗⃗𝜌 × 𝑔⃗ 
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So the density gradient is also parallel to 𝑔⃗. Let 𝑔⃗ = 𝑔𝑧̂ so that 𝑧̂ 

points downward. We have 𝑃 = 𝑃(𝑧) and 𝜌 = 𝜌(𝑧). That is, the 

density and pressure only depends on the depth z. The equation of 

hydrostatic equilibrium becomes  

𝑑𝑃

𝑑𝑧
= 𝜌𝑔 

If the fluid density 𝜌 is constant, the equation is easily integrated to 

give 

𝑃(𝑧) = 𝑃0 + 𝜌𝑔𝑧, 

where 𝑃0 is the pressure at z=0. This equation says that the fluid 

pressure at a depth z is equal to 𝑃0 plus the total weight of the fluid 

per unit area above the point. 

 

Mercury Barometer 
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A mercury barometer measures the atmospheric pressure by 

measuring the height of the mercury column in a glass tube above 

the mercury-filled basin at the bottom. The pressure is given by  

𝑃 = 𝜌Hg𝑔ℎ 

where 𝜌Hg = 13546kg/m3. A millimeter of mercury (mmHg) is 

formerly defined as the pressure generated by a column of mercury 

one mm high (𝜌Hg𝑔 × 1mm = 132.9 Pa). Now it’s defined as 

exactly 133.32 Pa. The standard atmosphere pressure is 101kPa, 

which is about 760 mmHg. 

 

Archimedes’ Principle 

Consider an object floating stationary in a fluid.  

 

 

The buoyancy force exerted by the fluid on the object is  

𝐹⃗buoy = −∫ 𝑃𝑑𝐴
 

surface
 , where the integral is over the surface of 

the object immersed in the fluid. Imagine removing the body and 
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replacing it by fluid that has the same density 𝜌(𝑧) and pressure 

P(z), at each depth z, as the surrounding fluid.  

 

Integrating the equation of hydrostatic equilibrium over the volume 

of the previously immersed body yields 

∫ ∇⃗⃗⃗𝑃
 

𝑉

𝑑𝑉 = ∫𝜌𝑔⃗𝑑𝑉 
 

𝑉

 

which can be written as  

∫ 𝑃 𝑑𝐴 =
 

surface

∫𝜌𝑔⃗𝑑𝑉 
 

𝑉

 

Hence, 

𝐹⃗buoy = −𝑔⃗∫𝜌𝑑𝑉
 

𝑉

= −𝑀𝑓𝑔⃗ 

Here Mf is the mass of the fluid displaced by the body. This is 

known as Archimedes’ principle, which states that the upward 

buoyant force on the body is equal in magnitude to the weight Mf g 

of the displaced fluid.  
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Tip of the Iceberg 

 

Consider an iceberg floating in sea water. Let Va be the volume of 

the iceberg above the water and V be the total volume. Let 𝜌𝑤 =

1027 kg/m3 be the density of sea water and 𝜌𝑖 = 920 kg/m3 be the 

density of ice. In static state, the weight of the iceberg 𝑊𝑖 = 𝜌𝑖𝑉𝑔 

is balanced by the buoyant force, which according to Archimedes’ 

principle is given by 𝐹𝑏𝑢𝑜𝑦 = 𝜌𝑤𝑉𝑏𝑔. Here 𝑉𝑏 = 𝑉 − 𝑉𝑎 is the 

volume of the iceberg below the water. Hence  

𝜌𝑖𝑉𝑔 = 𝜌𝑤(𝑉 − 𝑉𝑎)𝑔 , 

which leads to  

𝑉𝑎
𝑉
=
𝜌𝑤 − 𝜌𝑖
𝜌𝑤

= 0.10 . 
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This means that only 10% of the iceberg is seen above the sea 

water. 

 

Earth’s Atmosphere 

The variation of Earth’s pressure with altitude is closely 

approximated by the hydrostatic equilibrium. 

Let z be the upward direction and write 𝑔⃗ = −𝑔𝑧̂. The equation of 

hydrostatic equilibrium becomes  

𝑑𝑃

𝑑𝑧
= −𝜌𝑔 

From the ideal gas law,  

𝑃 = 𝑛𝑘𝑇 =
𝜌

𝑀
𝑅𝑇 , 

where  

R = NAk = 8.31J/(mol K) is the gas constant,  

M = 0.02896 kg/mol is the molar mass of the air (78% N2, 21% O2, 

0.9% Ar and small amount of other gases). 

Combining the two equations yields 

𝑑𝑃

𝑑𝑧
= −

𝑀𝑔

𝑅𝑇
𝑃 

𝑑𝑃

𝑃
= −

𝑀𝑔

𝑅𝑇
𝑑𝑧 

Integrating both sides gives  
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𝑃(𝑧) = 𝑃0 exp (−∫
𝑀𝑔

𝑅𝑇(𝑧′)
𝑑𝑧′

𝑧

0

) 

Here P0 is the pressure at z=0. If T=T0 is constant (isothermal), the 

above equation becomes  

𝑃(𝑧) = 𝑃0 exp (−
𝑀𝑔𝑧

𝑅𝑇0
)                               (𝑖𝑠𝑜𝑡ℎ𝑒𝑟𝑚𝑎𝑙) 

The pressure decays exponentially.  

A more realistic model assumes that the temperature decreases 

linearly with height: 

𝑇 = 𝑇0 − 𝐿𝑧 , 

where L is called the temperature lapse rate. In this case,  

∫
𝑀𝑔

𝑅𝑇(𝑧′)
𝑑𝑧′ =

𝑀𝑔

𝑅
∫

𝑑𝑧′

𝑇0 − 𝐿𝑧′
= −

𝑀𝑔

𝑅𝐿
ln
𝑇0 − 𝐿𝑧

𝑇0

𝑧

0

𝑧

0

 

and the pressure is  

𝑃(𝑧) = 𝑃0 (1 −
𝐿𝑧

𝑇0
)
𝑀𝑔/𝑅𝐿

                 (𝑙𝑎𝑝𝑠𝑒) 

Recall that  

lim
𝑘→∞

(1 +
𝑥

𝑘
)
𝑘

= lim
𝑘→∞

exp [𝑘 ln (1 +
𝑥

𝑘
)] = lim

𝑘→∞
exp (𝑘 ⋅

𝑥

𝑘
) = 𝑒𝑥 

It’s easy to show that the (lapse) equation reduces to the 

(isothermal) equation in the limit 𝐿 → 0. 

The assumption of linearly variation in temperature doesn’t hold 

when at high altitude. A more realistic model is to divide the 

atmosphere into several layers, and each layer has a different 
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temperature lapse rate. In this model, the pressure in one layer is 

given by  

𝑃(𝑧) = 𝑃𝑏 [1 −
𝐿𝑏(𝑧 − 𝑧𝑏)

𝑇𝑏
]
𝑀𝑔/𝑅𝐿𝑏

 

Here the subscript b ranges from 0 to 6, corresponding to each of 

the 7 layers of the atmosphere model. The constants are shown in 

the table below.  

 

 

Sub-

script 

b  

Geopotential  

height above mean 

Sea level (z)  

Static pressure  Standard 

temperature 

(K)  

Temperature lapse 

rate  

(m) (ft) (Pa) (inHg) (K/m) (K/ft)  

0 0 0 101 

325.00 

29.92126 288.15 0.0065 0.0019812 

1 11 000 36,089 22 

632.10 

6.683245 216.65 0.0 0.0 

2 20 000 65,617 5474.89 1.616734 216.65 -0.001 -0.0003048 

3 32 000 104,987 868.02 0.2563258 228.65 -0.0028 -0.00085344 

4 47 000 154,199 110.91 0.0327506 270.65 0.0 0.0 

5 51 000 167,323 66.94 0.01976704 270.65 0.0028 0.00085344 

6 71 000 232,940 3.96 0.00116833 214.65 0.002 0.0006096 
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Credit: Wikimedia 

(https://en.wikipedia.org/wiki/Barometric_formula) 

 

Adafruit’s DPS 310 Pressure sensor 

 

https://www.adafruit.com/product/4494?gad_source=5 

According to Adafruit, their DPS 310 pressure sensor can measure 

the change in pressure to an accuracy of 0.2 Pa. Recall that 

𝑑𝑃

𝑑𝑧
= −

𝑀𝑔

𝑅𝑇
𝑃    ⇒    Δ𝑃 = −

𝑀𝑔𝑃

𝑅𝑇
Δ𝑧 

https://en.wikipedia.org/wiki/Barometric_formula
https://www.adafruit.com/product/4494?gad_source=5
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Hence a pressure change of Δ𝑃 = 0.2 Pa corresponds to a change 

of height of Δ𝑧 = 1.7 cm for P=101 kPa and T=300 K. The 

pressure sensor can measure altitude to an accuracy of about 2cm. 

————  ———— 

 

Energy conservation 

Let’s develop an energy conservation equation, again assuming the 

viscosity  is zero.  I’m going to follow the approach in Chapter 12 

of the lecture notes by Blandford and Thorne.  

Consider a small fluid element occupying a volume V. Let 𝜌 and P 

be the density and pressure. The mass of this fluid element 𝑚 =

𝜌𝑉 is constant as we follow its motion. However, its density, 

pressure and volume can change. According to the first law of 

thermodynamics,  

𝑑𝐸 = 𝑑𝑄 − 𝑃𝑑𝑉 

where E is the internal energy, dQ is the amount of heat flowing 

into the fluid element. Assume the flow is adiabatic so that there is 

no heat flow (dQ=0). We have 𝑑𝐸 = −𝑃𝑑𝑉, which means that the 

increase of internal energy is caused by the compression of the 

fluid. Let 𝑤 = 𝐸/𝑚 be the internal energy per unit mass. Using 

𝑉 = 𝑚/𝜌, we can write the first law as  

http://www.pmaweb.caltech.edu/Courses/ph136/yr2011/1013.1.K.pdf
http://www.pmaweb.caltech.edu/Courses/ph136/yr2011/
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𝑚𝑑𝑤 = −𝑃𝑑 (
𝑚

𝜌
) 

Dividing the equation by m gives 𝑑𝑤 = −𝑃𝑑(
1

𝜌
). Hence the rate of 

change of internal energy per mass is  

𝑑𝑤

𝑑𝑡
= −𝑃

𝑑

𝑑𝑡
(
1

𝜌
) = −

𝑑

𝑑𝑡
(
𝑃

𝜌
) +

1

𝜌

𝑑𝑃

𝑑𝑡
 

or 

𝑑

𝑑𝑡
(𝑤 +

𝑃

𝜌
) =

1

𝜌

𝑑𝑃

𝑑𝑡
=
1

𝜌

𝜕𝑃

𝜕𝑡
+
𝑣⃗ ⋅ ∇⃗⃗⃗𝑃

𝜌
       [1] 

Recall the equation for conservation of momentum: 

𝑑𝑣⃗

𝑑𝑡
= −

∇⃗⃗⃗𝑃

𝜌
+ 𝑔⃗ 

Taking the dot product of the above equation by 𝑣⃗ gives  

𝑣⃗ ⋅
𝑑𝑣⃗

𝑑𝑡
+
𝑣⃗ ⋅ ∇⃗⃗⃗𝑃

𝜌
− 𝑣⃗ ⋅ 𝑔⃗ = 0    [2] 

The acceleration of gravity 𝑔⃗ can be written as 𝑔⃗ = −∇⃗⃗⃗𝑈, where U 

is the gravitational potential. Near Earth’s surface, 𝑈 = 𝑔ℎ, where 

h is the height above a reference point. Since gravity on Earth is 

static, 
𝜕𝑈

𝜕𝑡
= 0 and we have 

𝑑𝑈

𝑑𝑡
=
𝜕𝑈

𝜕𝑡
+ 𝑣⃗ ⋅ ∇⃗⃗⃗𝑈 = 𝑣⃗ ⋅ ∇⃗⃗⃗𝑈 = −𝑣⃗ ⋅ 𝑔⃗    [3] 

Write  
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𝑣⃗ ⋅
𝑑𝑣⃗

𝑑𝑡
=
𝑑

𝑑𝑡
(
1

2
𝑣⃗ ⋅ 𝑣⃗) =

𝑑

𝑑𝑡
(
1

2
𝑣2)     [4] 

Combining equations [1]-[4] gives  

𝑑

𝑑𝑡
(
1

2
𝑣2 +

𝑃

𝜌
+ 𝑈 + 𝑤) =

1

𝜌

𝜕𝑃

𝜕𝑡
 

For a steady flow, 
𝜕𝑃

𝜕𝑡
= 0 and so  

 

21
constant

2

P
v U w


     

 

along a streamline, which is a line obtained by connecting the 

velocity field 𝑣⃗ in space. It’s analogous to the electric and 

magnetic field lines in electrodynamics. This is called Bernoulli’s 

equation; it’s why airplanes fly.  As v increases, P decreases.  Thus 

lift is generated by airfoils as the greater speed across the curved, 

upper surface is accompanied by decreased pressure. 

 

 To see why the quantity 𝑏 =
1

2
𝑣2 +

𝑃

𝜌
+ 𝑢 + 𝑤 is constant along a 

streamline, consider the flow depicted in the following diagram.  
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Consider a fluid element initially (t=0) at point A in the diagram 

and moves to point C later at 𝑡 = Δ𝑡. Bernoulli’s eqation tells us 

that the values of b remains unchanged. Hence b at point C at 𝑡 =

Δ𝑡 is equal to b at point A at t=0. Since the flow is steady, 𝜕𝑏/𝜕𝑡 =

0 at both A and C. As a result, the values of b at points A and C are 

the same at all times. Suppose the fluid element at point C moves 

to point D at a later time. By the same argument, one can deduce 

that the values of b at C and D are the same at all times. Hence one 

can conclude that every point on a single streamline must have the 

same value of b. Different streamlines, on the other hand, can have 

different values of b in general. However, if the flow in a region is 

homogeneous, one can expect that all streamlines have the same b. 

The exception is when there are flow separations, which often 

occur when a fluid moves from a smaller container to a larger 
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container, as shown in the diagram above. One can expect that the 

blue streamlines in the diagram have the same value of b if the 

fluid flow on the left is homegeneous. However, the red 

streamlines at the left corners of the right container are 

disconnected from the rest of the flow. Thus there is no reason to 

expect that the values of b in the red streamlines are the same as 

that in the blue streamlines. 

         

For an incompressible fluid (e.g., water), w is constant so we have 

21
constant

2

P
v U


   .  

If the fluid flow does not go uphill or downhill so that U is 

constant, Bernoulli’s equation simplifies further: 

21
constant.

2

P
v


   

Keep in mind how we got to this point: we were investigating how 

a small volume of fluid accelerated due to the existence of a 

pressure gradient. Modification of those equations to tell us how 

the kinetic energy of the small volume of fluid changed thanks to 

the power applied by the pressure gradient to our volume gave us 

Bernoulli’s equation. It says, in effect, that the pressure will drop 

as the fluid expends energy speeding itself up. 
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One should also keep in mind the limitation of Bernoulli’s 

equation. It only applied in laminar flows, where streamlines are 

well-defined. Bernoulli’s equation doesn’t apply in turbulent 

flows. Turbulent flows are usually unsteady, which violates one of 

the assumptions in the derivation of Bernoulli’s equation. As the 

velocity fields in a turbulent flow are irregular and change rapidly 

in time, there are no well-defined streamlines. Viscosity is 

important in turbulence and is not accounted for in Bernoulli’s 

equation. 

 

Example: Water is flowing out of a rectangular tank from the 

bottom of a small hole. How long does it take to excavate the water 

from the tank? 
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The pressure P is the same at the top of the water level and at the 

hole. Apply Bernoulli’s equation at height y and at the hole: 

1

2
𝑦̇2 +

𝑃

𝜌
+ 𝑔𝑦 =

1

2
𝑣2 +

𝑃

𝜌
 

⇒    𝑣2 − 𝑦̇2 = 2𝑔𝑦          (1) 

In a previous example, we find  

𝑦̇ = −
𝐴ℎ
𝐴(𝑦)

𝑣 = −
𝐴ℎ
𝐴
𝑣    (2) 

where Ah is the area of the hole and A the cross-sectional area of 

the tank. For a rectangular tank, A is independent of y. Combining 

equations (1) and (2) leads to  

(1 −
𝐴ℎ
2

𝐴2
)𝑣2 = 2𝑔𝑦 

and so  

𝑣 = √2𝑔𝑦 (1 −
𝐴ℎ
2

𝐴2
)

−1/2

≈ √2𝑔𝑦     (3) 

when 𝐴ℎ ≪ 𝐴. This is the speed that a body would acquire in 

falling freely from a height y. Note that the rate of water flow 

decreases as the water level y decreases. Combine (2) and (3): 

𝑦̇ = −
𝐴ℎ
𝐴
√2𝑔𝑦 

which can be rewritten as 

𝑑𝑦

√𝑦
= −

𝐴ℎ
𝐴
√2𝑔𝑑𝑡 
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Assume that y=y0 at t=0. Integrating both sides gives 

∫
𝑑𝑦′

√𝑦′
= −

𝐴ℎ
𝐴
√2𝑔 𝑡

𝑦

𝑦0

 

2√𝑦 − 2√𝑦0 = −
𝐴ℎ
𝐴
√2𝑔 𝑡 

and the water level at time t is  

𝑦(𝑡) =  (√𝑦0 −
𝐴ℎ
𝐴
√
𝑔

2
 𝑡)

2

 

Water is excavated from the tank at time T at which y(T)=0, or  

𝑇 =
𝐴

𝐴ℎ
√
2𝑦0
𝑔

 

Note that √2𝑦0/𝑔 is the time required for an object to fall freely 

from a height y0. So T is longer than the free-fall time by a factor 

of 𝐴/𝐴ℎ. 

For 𝐴/𝐴ℎ = 40 and 𝑦0 = 0.3m, 𝑇 ≈10s. Note that Bernoulli’s 

equation only applies to steady flow. The water flow in the tank is 

not steady as the flow rate changes with time. However, 

Bernoulli’s equation can still be used if the change is sufficiently 

slow. The flow is said to be “quasi-steady” in this case. We thus 

require T to be much longer than the relevant dynamical time 

scales. There are two dynamical time scales in this problem. The 

first is associated with pressure, which is characterized by the time 
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it takes for sound to travel a distance y0. The sound speed in water 

is about 1500m/s, so y0/cs = 0.0002s, which is much shorter than T. 

The second time scale is associated with gravity, which is 

characterized by the free-fall time from height y0. Since T is longer 

than the free-fall time by the factor 𝐴/𝐴ℎ = 40, the quasi-steady 

approximation is fine and we expect a relative error of about 1/40 

= 2.5% in the estimated value of T. 

————  ———— 

 

(Ir)rotational flow 

 

Remember about curl?  Look over material in the lecture notes on 

conservative forces for a refresher, if necessary. The vorticity is 

defined as 𝜔⃗⃗⃗ = ∇⃗⃗⃗ × 𝑣⃗. It describes the local spinning motion of 

fluid. 

 

Let’s say the velocity in the fluid near a vortex looks like this: 
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To have something concrete to work with, let’s say the velocity at 

a point  ,r   is   ˆv v r   where 0r   is the center of the vortex. 

 

In Cartesian coordinates, we could write 

 

   2 2 ˆ ˆ  cos sinv v x y y x    . 

 

If you look up the form for curl in cylindrical coordinates you’ll 

find that it’s  

 

1 1ˆˆ ˆ  z r z r
A A AA A A A

A r z
r z z r r r r

  
 

        
           

         
. 

 

As a result, since  v v r  , the vorticity is   

𝜔⃗⃗⃗ = ∇⃗⃗⃗ × 𝑣⃗ = [
𝜕

𝜕𝑟
𝑣(𝑟) +

𝑣(𝑟)

𝑟
] 𝑧̂ 

 

because  0r zv v  . 

 

A circular flow pattern like this has non-zero vorticity. 
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If the layers are all turning with the same angular velocity, there’ll 

be no “shearing” between adjacent layers.  This means that one 

layer in the flow does not slide past another, and there will be no 

energy loss associated with viscous drag that one layer will exert 

on another. 

 

If all layers turn with the same angular velocity , we’ll have 

𝑣(𝑟) = Ω𝑟 which will yield 

𝜔⃗⃗⃗ = [
𝜕

𝜕𝑟
𝑣(𝑟) +

𝑣(𝑟)

𝑟
] 𝑧̂ = 2Ω𝑧̂ 

independent of r. 

 

If 𝜔⃗⃗⃗ depends on r, there’ll be shear dislocations of adjacent layers 

relative to each other, which will lead to energy dissipation in a 

viscous fluid. 

 

If 𝜔⃗⃗⃗ = 0, the flow is irrotational:  a small pinwheel placed in the 

fluid won’t spin. 

 

We can be a little more formal than using the pinwheel analogy by 

referring to Stokes’ theorem: 

∮ 𝑣⃗ ⋅ 𝑑𝑠

 

𝑙𝑜𝑜𝑝

= ∬(∇⃗⃗⃗ × 𝑣⃗) ⋅ 𝑑𝐴 = ∬ 𝜔⃗⃗⃗ ⋅ 𝑑𝐴

 

𝑎𝑟𝑒𝑎

 

𝑎𝑟𝑒𝑎

 . 
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If the velocity seems to go around in circles so that ∮ 𝑣⃗ ⋅ 𝑑𝑠
 

𝑙𝑜𝑜𝑝
≠

0, we’ll automatically have non-zero vorticity inside the loop. 

 

It’ll also be true that fluid flow with a velocity gradient—for 

example, having vx increase with y—can correspond to “rotational 

flow,” even if all molecules in the fluid are traveling in the x 

direction. 

 

————  ———— 

 

Shear stress in a “Newtonian fluid” 

Imagine you drag a sheet of plywood of area A across the floor, 

using a spring balance to measure the force F necessary to 

overcome friction. The force per unit area required to move the 

plywood is F/A, of course; we refer to this as the stress caused by 

the interaction between the plywood and the floor. 

 

Imagine instead that we have a layer of fluid with non-zero 

viscosity between a (rough) plate of area A and the rough bottom 
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of a large tank, and drag the plate with velocity 
plate

ˆv v x  across the 

top of the fluid, as shown in the figure. 

 

 

 

If the bottom of the tank and the surface of the plate that is in 

contact with the fluid are both sufficiently rough, the layer of fluid 

in contact with the surfaces should move with the same velocity as 

the surfaces. The fluid at y = d immediately below the plate will 

move to the right with velocity 
plate

ˆv x  while the fluid at the bottom 

of the tank will remain at rest. 

 

In a Newtonian fluid, the fluid velocity below the moving plate 

increases linearly from 0 to 
plate

ˆv x  as y increases from 0 to d. We 

can write 

  plate, ,
.

x
vv x y z

y d





 

 

fluid-filled tank with rough bottom

rough plate, area A,

floating on surface of fluid

d is depth of fluid

v

x

y

z

fluid-filled tank with rough bottom

rough plate, area A,

floating on surface of fluid

d is depth of fluid

v

fluid-filled tank with rough bottom

rough plate, area A,

floating on surface of fluid

d is depth of fluid

v

x

y

z

x

y

z
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A Newtonian fluid is viscous (otherwise there’d be no shear forces 

to make the fluid move parallel to the plate), and will exert a stress 

  (force per unit area) on the dragged plate that is proportional to 

how fast we’re pulling it, among other things.  

 

(Liquid) water behaves like a Newtonian fluid. Examples of non-

Newtonian fluids include Silly Putty and chilled caramel ice cream 

toppings: stress them hard enough and they’ll behave like solids. 

(Silly Putty will shatter, for example, when the applied force 

comes from a hammer.) 

 

The thicker the layer of fluid, the less the force needed to drive the 

plate with constant speed in opposition to the viscous drag exerted 

by the fluid. 

 

If we can assume that the fluid at the bottom of the tank has zero 

velocity, while the fluid in contact with the bottom of the plate has 

the same velocity as the plate, the required force will be 

proportional to 1/d for a Newtonian fluid. As a result, the shear 

stress on the plate (and on the bottom of the tank) has magnitude 

plate
.x

v vF

A d y
  


  


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The constant  is an intrinsic property of the fluid, and is called the 

fluid’s viscosity.  

 

It’s not going to be true in general that the fluid velocity increases 

linearly with distance transverse to the direction of flow: that’s 

only the case for the example of a plate being dragged above a 

rough surface. 

 

Imagine we’ve set up a “steady flow” in a fluid: there’s no explicit 

time dependence to the fluid velocity so we can write it as  

 , , .v x y z  Let’s look at how viscous forces are exerted on one 

small volume element by adjacent volume elements. Let’s make 

them all the same size, and assume that the general direction of 

flow is along x, and that the flow speed increases (but not 

necessarily linearly) with y. 

 

Viscous drag from the bottom volume element creates shear stress 

that tries to slow the middle element down; shear stress from the 

upper volume element will try to speed the middle element up. The 

shear stresses will also distort the volume element; we’ll look at 

what’s going on at the instant when the collection of molecules in 

the middle volume happens to form a rectangular solid. 
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The net (shear) force on the middle element will be 

 

upper lower
surface surface

2 2

2 2
.

x x x
x

x x

dv dv dvd
F dxdz dydxdz

dy dy dy dy

d v d v
dxdydz dV

dy dy

 

 

 
            

 

 

 

 

If we allow for a similar velocity gradient in vx in the z direction, 

we’ll have an additional contribution to the force on our middle 

volume element. As a result, we expect the force from viscosity on 

our volume element to be 

2 2

2 2
.x x

x

d v d v
F dV

dy dz

 

  
 

 

 

There are also viscous effects that act along the direction of motion 

of the fluid: if you've ever poured honey into a cup of tea, you've 

x

y

z

dy

dz
dx

  ˆ, ,xv v x y dy z x 

  ˆ, ,xv v x y z x

  ˆ, ,xv v x y dy z x 

x

y

z

x

y

z

dy

dz
dx

  ˆ, ,xv v x y dy z x 

  ˆ, ,xv v x y z x

  ˆ, ,xv v x y dy z x 
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seen this. Even though gravity is pulling honey off your spoon, the 

viscosity of the honey keeps it from going into freefall.  

 

 

 

The volume element to the left exerts a pull in the negative x 

direction, the volume to the right a pull in the positive x direction. 

In a Newtonian fluid, the pull along the direction of motion 

associated with viscosity (this is distinct from a pull associated 

with a pressure gradient) will also be proportional to the derivative 

of the velocity: 

.x xF v

A x





 

I won’t derive it, but the proportionality constant in a Newtonian 

fluid is the same viscosity constant  as for shear forces.  

 

The net force on the volume from the non-zero xv x   is 

x

y

z

  ˆ, ,xv v x y z dz x 

  ˆ, ,xv v x y z x

  ˆ, ,xv v x y z dz x 

x

y

z

x

y

z

  ˆ, ,xv v x y z dz x 

  ˆ, ,xv v x y z x

  ˆ, ,xv v x y z dz x 
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right left
surface surface

2 2

2 2
.

x x x
x

x x

dv dv dvd
F dydz dxdydz

dx dx dx dx

d v d v
dxdydz dV

dx dx

 

 

 
        

    
 

 

 

 

As a result, the full expression for the viscous force is nicely 

symmetric:  

 
2 2 2

2

2 2 2
.x x x

x x

d v d v d v
F dV dV v

dx dy dz
 
 

     
 

 

Including the effects of possible flow velocities along y and z gives 

 

 2 2 2 2ˆ ˆ ˆ .x y zF dV x v y v z v dV v            

 

————  ———— 

 

Viscous Stress tensor 

You may have learned about the elastic tensor during an oscillation 

unit in an intermediate classical mechanics course.  
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When I described viscous forces that produce shear strains, I 

concluded that Fx contained contributions from the second 

derivatives of vx.  

 

The stress tensor is something we can use to streamline some of 

our notation in fluid dynamics. Here I’m going to follow the 

approach in Chapter 12 of the lecture notes by Blandford and 

Thorne. 

 

Let’s write the stress tensor 𝑇 in matrix form: 

𝑇 = (

𝑇𝑥𝑥 𝑇𝑥𝑦 𝑇𝑥𝑧
𝑇𝑦𝑥 𝑇𝑦𝑦 𝑇𝑦𝑧
𝑇𝑧𝑥 𝑇𝑧𝑦 𝑇𝑧𝑧

) 

The two-sided arrow in the superscript of 𝑇  indicates that it’s a 

tensor with two indices. It can be shown that the stress tensor must 

be symmetrical: 𝑇𝑖𝑗 = 𝑇𝑗𝑖. Here the indices i and j run from 1 to 3, 

with 1 means x, 2 means y and 3 means z. The physical meaning of 

the stress tensor is that the force acting on a small surface in the 

fluid 𝑑𝐴 = 𝑛̂𝑑𝐴 is given by  

𝑑𝐹⃗ = 𝑇 ⋅ 𝑑𝐴 

𝑑𝐹⃗ = 𝑑𝐴(𝑇𝑥𝑥𝑛𝑥 + 𝑇𝑥𝑦𝑛𝑦 + 𝑇𝑥𝑧𝑛𝑧)𝑥̂ 

+𝑑𝐴(𝑇𝑦𝑥𝑛𝑥 + 𝑇𝑦𝑦𝑛𝑦 + 𝑇𝑦𝑧𝑛𝑧)𝑦̂ 

http://www.pmaweb.caltech.edu/Courses/ph136/yr2011/1013.1.K.pdf
http://www.pmaweb.caltech.edu/Courses/ph136/yr2011/
http://www.pmaweb.caltech.edu/Courses/ph136/yr2011/
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+𝑑𝐴(𝑇𝑧𝑥𝑛𝑥 + 𝑇𝑧𝑦𝑛𝑦 + 𝑇𝑧𝑧𝑛𝑧)𝑧̂ 

Here 𝑛̂ is the outward unit vector normal to the surface. 

Consider a fluid element occupying a certain volume. The total 

force on this fluid element by the surrounding fluid is  

𝐹⃗ = − ∫ 𝑇

 

surface

⋅ 𝑑𝐴 = − ∫ ∇⃗⃗⃗ ⋅ 𝑇

 

volume

𝑑𝑉 

where we have used the divergence theorem. The negative sign 

arises from the fact that for a closed surface, 𝑑𝐴 points out of the 

fluid element instead of into it. The divergence of the stress tensor 

is  

∇⃗⃗⃗ ⋅ 𝑇 = (
𝜕𝑇𝑥𝑥
𝜕𝑥

+
𝜕𝑇𝑦𝑥

𝜕𝑦
+
𝜕𝑇𝑧𝑥
𝜕𝑧
) 𝑥̂ + (

𝜕𝑇𝑥𝑦

𝜕𝑥
+
𝜕𝑇𝑦𝑦

𝜕𝑦
+
𝜕𝑇𝑧𝑦

𝜕𝑧
) 𝑦̂ 

+(
𝜕𝑇𝑥𝑧
𝜕𝑥

+
𝜕𝑇𝑦𝑧

𝜕𝑦
+
𝜕𝑇𝑧𝑧
𝜕𝑧
) 𝑧̂ 

which is the negative of force per volume acting on a small fluid 

element. 

The stress tensor of an ideal fluid is 𝑇 = 𝑃𝐺, where P is pressure 

and 𝐺 is called the metric tensor. In Cartesian coordinates, 𝐺 is 

represented by a 3×3 identity matrix. In this case, 𝑇 is represented 

by a diagonal matrix 

𝑇 = (
𝑃 0 0
0 𝑃 0
0 0 𝑃

)  
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The force acting on a small surface is 𝑑𝐹⃗ = 𝑇 ⋅ 𝑑𝐴 = 𝑃𝑑𝐴. The 

force is in the direction of 𝑑𝐴 and has equal magnitude in all 

directions (isotropic). The divergence of 𝑇 is equal to the pressure 

gradient:  

∇⃗⃗⃗ ⋅ 𝑇 = (
𝜕𝑇𝑥𝑥
𝜕𝑥

+
𝜕𝑇𝑦𝑥

𝜕𝑦
+
𝜕𝑇𝑧𝑥
𝜕𝑧
) 𝑥̂ + (

𝜕𝑇𝑥𝑦

𝜕𝑥
+
𝜕𝑇𝑦𝑦

𝜕𝑦
+
𝜕𝑇𝑧𝑦

𝜕𝑧
) 𝑦̂ 

+(
𝜕𝑇𝑥𝑧
𝜕𝑥

+
𝜕𝑇𝑦𝑧

𝜕𝑦
+
𝜕𝑇𝑧𝑧
𝜕𝑧
) 𝑧̂ 

=
𝜕𝑃

𝜕𝑥
𝑥̂ +

𝜕𝑃

𝜕𝑦
𝑦̂ +

𝜕𝑃

𝜕𝑧
𝑧̂ = ∇⃗⃗⃗𝑃 

 

In the presence of viscosity, the stress tensor can be written as the 

sum of two parts:  

𝑇 = 𝑃𝐺 + 𝜏⃡ 

Here 𝜏⃡ is called the viscous stress tensor. The viscous force acting 

on a small surface is  

𝑑𝐹vis = 𝜏⃡ ⋅ 𝑑𝐴 

The total viscous force on this fluid element by the surrounding 

fluid is  

𝐹⃗vis = − ∫ 𝜏⃡

 

surface

⋅ 𝑑𝐴 = − ∫ ∇⃗⃗⃗ ⋅ 𝜏⃡

 

volume

𝑑𝑉 

 



Physics 525  University of Illinois 

An introduction to fluid dynamics 

©2024 University of Illinois 01-59  

 

In the presence of this viscous force per volume, we have to add an 

extra term 𝑓vis = −∇⃗⃗⃗ ⋅ 𝜏⃡ to the momentum conservation equation: 

𝜌
𝑑𝑣⃗

𝑑𝑡
= 𝜌 (

𝜕𝑣⃗

𝜕𝑡
+ 𝑣⃗ ⋅ ∇⃗⃗⃗𝑣⃗) = −∇⃗⃗⃗𝑃 + 𝜌𝑔⃗ − ∇⃗⃗⃗ ⋅ 𝜏⃡ 

The effect of viscosity is to resist the motion of one layer of fluid 

slide past another layer. To motivate a model for 𝜏⃡ requires us to 

express mathematically what we mean by “one layer of fluid slide 

past another layer.”  

The motion of fluid is completely described by the fluid velocity 

field 𝑣⃗. Sliding can occur if neighboring fluid elements move with 

different velocities. Introduce the velocity gradient tensor  

∇⃗⃗⃗𝑣⃗ =

(

 
 
 
 

𝜕𝑣𝑥
𝜕𝑥

𝜕𝑣𝑦

𝜕𝑥

𝜕𝑣𝑧
𝜕𝑥

𝜕𝑣𝑥
𝜕𝑦

𝜕𝑣𝑦

𝜕𝑦

𝜕𝑣𝑧
𝜕𝑦

𝜕𝑣𝑥
𝜕𝑧

𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑧
𝜕𝑧 )

 
 
 
 

 

It’s useful to introduce a quantity called expansion: 

𝜃 = 𝑇𝑟(∇⃗⃗⃗𝑣⃗) =
𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑦

𝜕𝑦
+
𝜕𝑣𝑧
𝜕𝑧

= ∇⃗⃗⃗ ⋅ 𝑣⃗ 

To understand the physical significance of 𝜃, consider a small fluid 

element occupying a small volume Δ𝑉. The mass of this fluid 

element  Δ𝑚 = 𝜌Δ𝑉 is constant as we move with it, but its density 

and volume may change. So we have  
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0 =
𝑑Δ𝑚

𝑑𝑡
= Δ𝑉

𝑑𝜌

𝑑𝑡
+ 𝜌

𝑑Δ𝑉

𝑑𝑡
 

From the continuity equation, we have 
𝑑𝜌

𝑑𝑡
= −𝜌∇⃗⃗⃗ ⋅ 𝑣⃗ = −𝜌𝜃. 

Substituting this to the above equation gives  

𝜃 =
1

Δ𝑉

𝑑Δ𝑉

𝑑𝑡
 

Thus, 𝜃 is the fractional rate of increase of fluid element’s volume. 

Next, we introduce the rate of shear tensor 𝜎 and rate of rotation 

tensor 𝑟⃡ whose components are defined as   

𝜎𝑖𝑗 =
1

2
(
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖
) −

1

3
𝜃𝛿𝑖𝑗 

𝑟𝑖𝑗 =
1

2
(
𝜕𝑣𝑖
𝜕𝑥𝑗

−
𝜕𝑣𝑗

𝜕𝑥𝑖
) 

Again the indices i and j run from 1 to 3 (1 means x, 2 means y, 3 

means z,  and 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧). The Kronecker delta 

function is 𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 0 if 𝑖 ≠ 𝑗. The rate of shear tensor 

𝜎 is symmetry and trace-free (i.e. 𝜎𝑖𝑗 = 𝜎𝑗𝑖 and 𝑇𝑟(𝜎) = 𝜎𝑥𝑥 +

𝜎𝑦𝑦 + 𝜎𝑧𝑧 = 0). The rate of rotation tensor 𝑟⃡ is anti-symmetry 

(𝑟𝑖𝑗 = −𝑟𝑗𝑖) and trace-free. It’s easy to show that  

𝑟𝑥𝑦 = −𝑟𝑦𝑥 =
1

2
𝜔𝑧 , 𝑟𝑦𝑧 = −𝑟𝑧𝑦 =

1

2
𝜔𝑥 ,     𝑟𝑧𝑥 = −𝑟𝑥𝑧 =

1

2
𝜔𝑦 

and the diagonal terms vanish: 𝑟𝑥𝑥 = 𝑟𝑦𝑦 = 𝑟𝑧𝑧 = 0.  
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Here 𝜔⃗⃗⃗ = ∇⃗⃗⃗ × 𝑣⃗ is the vorticity we introduced earlier. Physically, 

𝑟⃡ describes a rotational motion of the fluid;  𝜎 describes the shear 

motion of the fluid – deformation that preserves fluid’s volume.  

It’s easy to show that the velocity gradient tensor can be 

decomposed as  

(∇⃗⃗⃗𝑣⃗)
𝑖𝑗
=
1

3
𝜃𝛿𝑖𝑗 + 𝜎𝑖𝑗 + 𝑟𝑖𝑗  

The first term corresponds to the expansion and contraction of a 

fluid, the second term describes the shear motion and the third term 

describes the rotational motion. It’s the shear motion (second term) 

that causes one layer of a fluid sliding past another layer. 

Thus a simple model of the viscous stress tensor is to assume that 

𝜏𝑖𝑗 is linear to the rate of deformation: 

𝜏𝑖𝑗 = −𝜁𝜃𝛿𝑖𝑗 − 2𝜇𝜎𝑖𝑗 

where 𝜁 and 𝜇 are called the coefficients of bulk and shear 

viscosity, respectively. The negative sign is to make viscosity 

oppose to the motion. In particular, the bulk viscosity −𝜁𝜃𝛿𝑖𝑗 

resists the fluid’s expansion and contraction, and shear viscosity 

−2𝜇𝜎𝑖𝑗 resists the fluid’s shear motion. In general, the bulk 

viscosity is much smaller than the shear viscosity and is often 

ignored.  
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Including viscosity; the Navier-Stokes equations 

Our momentum conservation equation in the presence of viscosity 

is  

𝜌
𝑑𝑣⃗

𝑑𝑡
= 𝜌 (

𝜕𝑣⃗

𝜕𝑡
+ 𝑣⃗ ⋅ ∇⃗⃗⃗𝑣⃗) = −∇⃗⃗⃗𝑃 + 𝜌𝑔⃗ − ∇⃗⃗⃗ ⋅ 𝜏⃡ 

This is called the Navier-Stokes Equation. Sometimes the 

“continuity equation” 
 

 
, , ,

0
x y z t

v
t





  


 is included as 

another of the Navier-Stokes equations.  

For an incompressible fluid like water, 𝜃 = ∇⃗⃗⃗ ⋅ 𝑣⃗ = 0. Hence  

𝜏𝑖𝑗 = −𝜇 (
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖
) 

Assuming 𝜇 is constant, we have  

∇⃗⃗⃗ ⋅ 𝜏⃡ = ∑
𝜕

𝜕𝑥𝑖
(∑𝜏𝑖𝑗𝑥𝑗̂

3

𝑗=1

) =

3

1=1

− 𝜇∑∑(
𝜕2𝑣𝑖
𝜕𝑥𝑖𝜕𝑥𝑗

+
𝜕2𝑣𝑗

𝜕𝑥𝑖
2 )𝑥𝑗̂

3

𝑗=1

3

𝑖=1

 

The first term is  

−𝜇∑∑
𝜕2𝑣𝑖
𝜕𝑥𝑖𝜕𝑥𝑗

𝑥𝑗̂ = −𝜇∑𝑥𝑗̂
𝜕

𝜕𝑥𝑗
∑
𝜕𝑣𝑖
𝜕𝑥𝑖

= −𝜇∇⃗⃗⃗(∇⃗⃗⃗ ⋅ 𝑣⃗) = 0

3

𝑖=1

3

𝑗=1

3

𝑗=1

3

𝑖=1

 

for incompressible fluid. The second term is  

−𝜇∑∑
𝜕2𝑣𝑗

𝜕𝑥𝑖
2 𝑥𝑗̂

3

𝑗=1

3

𝑖=1

= −𝜇∑
𝜕2

𝜕𝑥𝑖
2∑𝑣𝑗𝑥̂𝑗

3

𝑗=1

3

𝑖=1

= −𝜇∑
𝜕2𝑣⃗

𝜕𝑥𝑖
2 =

3

𝑖=1

− 𝜇∇2𝑣⃗ 
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Hence the viscous force per unit volume is  

𝑓vis = −∇⃗⃗⃗ ⋅ 𝜏⃡ = 𝜇∇
2𝑣⃗ 

for incompressible fluid. The Navier-Stokes equation for 

incompressible fluid is  

𝜌
𝑑𝑣⃗

𝑑𝑡
= 𝜌 (

𝜕𝑣⃗

𝜕𝑡
+ 𝑣⃗ ⋅ ∇⃗⃗⃗𝑣⃗) = −∇⃗⃗⃗𝑃 + 𝜌𝑔⃗ + 𝜇∇2𝑣⃗ 

 

Circulation 

Circulation Γ is defined as the following line integral around a 

closed contour C: 

Γ(t) = ∮ 𝑣⃗ ⋅ 𝑑𝑥⃗

 

𝐶(𝑡)

 

 

Using Stokes’ theorem, circulation can be written as the following 

surface integral. 

Γ(𝑡) = ∬ 𝜔⃗⃗⃗

 

𝑆(𝑡)

⋅ 𝑑𝑆 , 
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where 𝑆 is the surface bounded by the contour C and 𝜔⃗⃗⃗ = ∇⃗⃗⃗ × 𝑣⃗ is 

the vorticity. Hence circulation is also equal to the flux of vorticity 

across S. Suppose every point of the contour C(t) moves along with 

the fluid. At a later time, very point in C(t) will in general move to 

a difference location and the shape of C(t) may also be distorted. 

The rate of change of the circulation Γ(𝑡) is given by  

𝑑Γ

𝑑𝑡
= ∮

𝑑

𝑑𝑡
(𝑣⃗ ⋅ 𝑑𝑥⃗) =

 

𝐶(𝑡)

∮
𝑑𝑣⃗

𝑑𝑥
⋅ 𝑑𝑥⃗

 

𝐶(𝑡)

+ ∮ 𝑣⃗ ⋅ 𝑑 (
𝑑𝑥⃗

𝑑𝑡
)

 

𝐶(𝑡)

 

The second term is  

∮ 𝑣⃗ ⋅ 𝑑 (
𝑑𝑥⃗

𝑑𝑡
)

 

𝐶(𝑡)

= ∮ 𝑣⃗ ⋅ 𝑑𝑣⃗

 

𝐶(𝑡)

=
1

2
∮ 𝑑𝑣2
 

𝐶(𝑡)

= 0 . 

The first term can be rewritten using Navier-Stokes equation, 

resulting in  

𝑑Γ

𝑑𝑡
= − ∮

∇⃗⃗⃗𝑃

𝜌
⋅ 𝑑𝑥⃗

 

𝐶(𝑡)

+ ∮ 𝑔⃗ ⋅ 𝑑𝑥⃗

 

𝐶(𝑡)

− ∮
1

𝜌

 

𝐶(𝑡)

(∇⃗⃗⃗ ⋅ 𝜏⃡) ⋅ 𝑑𝑥⃗ . 

Since 𝑔⃗ = −∇⃗⃗⃗𝑈,  

∮ 𝑔⃗ ⋅ 𝑑𝑥⃗

 

𝐶(𝑡)

= − ∬(∇⃗⃗⃗ × ∇⃗⃗⃗𝑈) ⋅ 𝑑𝑆 = 0 .

 

𝑆(𝑡)

 

From Stokes’ theorem,  

− ∮
∇⃗⃗⃗𝑃

𝜌
⋅ 𝑑𝑥⃗

 

𝐶(𝑡)

= − ∬(∇⃗⃗⃗ ×
∇⃗⃗⃗𝑃

𝜌
) ⋅ 𝑑𝑆

 

𝑆(𝑡)

= ∬
∇⃗⃗⃗𝜌 × ∇⃗⃗⃗𝑃

𝜌2
⋅ 𝑑𝑆

 

𝑆(𝑡)

 . 
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Hence we have  

𝑑Γ

𝑑𝑡
= ∬

∇⃗⃗⃗𝜌 × ∇⃗⃗⃗𝑃

𝜌2
⋅ 𝑑𝑆

 

𝑆(𝑡)

− ∮
1

𝜌

 

𝐶(𝑡)

(∇⃗⃗⃗ ⋅ 𝜏⃡) ⋅ 𝑑𝑥⃗ . 

A fluid is said to be barotropic if the pressure only depends on 

density: 𝑃 = 𝑃(𝜌). This can occur in an ideal gas at constant 

temperature. In this case, ∇⃗⃗⃗𝑃 = (𝑑𝑃/𝑑𝜌)∇⃗⃗⃗𝜌 and so ∇⃗⃗⃗𝜌 × ∇⃗⃗⃗𝑃 = 0. 

Hence, 
𝑑Γ

𝑑𝑡
= 0 for barotropic, inviscid flow. This is called Kelvin’s 

circulation theorem. It means that circulation is persistent in a 

barotropic flow when viscosity is negligible.  

Water flowing through a long, cylindrical pipe 

This is a good example of the power of the Navier-Stokes 

equations. I’m going to follow the development of the subject in 

J.M. McDonough’s lecture notes, referenced at the beginning of 

this unit. 

 

Something I forgot to mention: to good accuracy, the layer of a 

viscous fluid that is in contact with a surface is always moving at 

exactly the same velocity as the surface. This is called the “no-slip 

condition.” 
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We need to rewrite the Navier-Stokes equations in cylindrical 

coordinates. That’s not a big deal; looking it up (rather than 

grinding it out myself) yields this: 

 

Continuity (conservation of mass) equation: 

     1 1
0

r zrv v v

t r r r z

  



  
   

   
 

 

Equation of motion for r component of momentum: 

 

2

1 1

r r r r
r z

rr r rz
r

v vv v v v
v v

t r r r z

rP
F

r r r r r z

 

 




   



    
     

    

  
      
    

 

 

Equation of motion for z component of momentum: 

 1 1

z z z z
r z

rz z zz
z

vv v v v
v v

t r r z

rP
F

z r r r z








  



    
    

    

  
     
    

 

 

For a Newtonian incompressible fluid, the momentum equations 

reduce to the following: 
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Equation of motion for r component of momentum: 

 

2

2 2

2 2 2 2

1 1 2

r r r r
r z

r r r
r

v vv v v v
v v

t r r r z

rv vv vP
F

r r r r r r z

 







 

    
     

    

     
       
       

 

 

Equation of motion for z component of momentum: 

2 2

2 2 2

1 1

z z z z
r z

z z z
z

vv v v v
v v

t r r z

v v vP
r F

z r r r r z







    
    

    

      
      
      

 

 

Due to the cylindrical symmetry of the pipe there cannot be a  

dependence to anything. If there are no gravitational effects, Fr and 

Fz are zero. 

 

If we look at the fluid far enough from the entrance of the pipe so 

that we’ve arrived at a place where the flow is steady, vr must be 

zero since the fluid is not passing out of the walls of the pipe. 

Naturally, v is also zero. Further, the density has no explicit time 

dependence. As a result, the continuity equation becomes 
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       1 1
0

r z z z
rv v v v v

t r r r z z z

   




    
     

     
 

 

so that vz can only depend on r, but not on z. 

 

The r momentum equation becomes 0P r    so that the pressure 

is independent of r, and can only depend on z: P(z). 

 

The z momentum equation becomes 

 
   1

0
zP z v r

r
z r r r


  

    
   

 

or 

   
.

zP z v r
r

z r r r

  
  

   
 

Note that the left side is only a function of z, while the right side is 

only a function of r. This can only be true if both sides are 

constant. There is a pressure drop in the pipe, of course. Let k be 

the constant. Integrating 𝑑𝑃/𝑑𝑧 = 𝑘 from z=0 to z=L gives 𝑘 =

−Δ𝑃/𝐿, where Δ𝑃 = 𝑃(0) − 𝑃(𝐿) and L is the length of the pipe. 

 

Solve for vz now, replacing our partial derivatives with total 

derivatives to be able to do the integrals: 
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𝜇

𝑟

𝑑

𝑑𝑟
(𝑟
𝑑𝑣𝑧
𝑑𝑟
) = −

Δ𝑃

𝐿
  

⇒   𝑟
𝑑𝑣𝑧
𝑑𝑟

= −
Δ𝑃

𝜇𝐿
∫𝑟𝑑𝑟 = −

Δ𝑃

2𝜇𝐿
𝑟2 + 𝐶1 

𝑑𝑣𝑧
𝑑𝑟

= −
Δ𝑃

2𝜇𝐿
𝑟 +

𝐶1
𝑟
 . 

Integrate: 

𝑣𝑧(𝑟) = −
Δ𝑃

4𝜇𝐿
𝑟2 + 𝐶1 ln 𝑟 + 𝐶2 . 

Two boundary conditions on vz: it must be finite at r = 0, and it 

must be zero at the walls of the pipe, where r = R. The first 

requires C1 = 0; the second that 𝐶2 = Δ𝑃𝑅
2/4𝜇𝐿  As a result, 

𝑣𝑧(𝑟) =
Δ𝑃

4𝜇𝐿
𝑅2 (1 −

𝑟2

𝑅2
) . 

 

We are neglecting messy things like turbulence! 

 

The average flow velocity in the pipe is this: 

〈𝑣𝑧〉 =
1

𝜋𝑅2
∫ ∫

Δ𝑃

4𝜇𝐿
𝑅2 (1 −

𝑟2

𝑅2
) 𝑟𝑑𝑟𝑑𝜃

2𝜋

0

𝑅

0

=
Δ𝑃

2𝜇𝐿
∫ (𝑟 −

𝑟3

𝑅2
)𝑑𝑟

𝑅

0

 

and finally 
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𝑈𝑎𝑣𝑔 = 〈𝑣𝑧〉 =
Δ𝑃

8𝜇𝐿
𝑅2 . 

 

The volume of fluid passing through the pipe is just the average 

flow velocity multiplied by the cross sectional area of the pipe: 

𝑄 = 𝜋𝑅2𝑈𝑎𝑣𝑔 =
πΔ𝑃

8𝜇𝐿
𝑅4 . 

This is known as the Hagen-Poiseulle equation. 

 

Reynolds Number and Turbulence 

The Navier-Stokes equation  

𝜌
𝑑𝑣⃗

𝑑𝑡
= 𝜌 (

𝜕𝑣⃗

𝜕𝑡
+ 𝑣⃗ ⋅ ∇⃗⃗⃗𝑣⃗) = −∇⃗⃗⃗𝑃 + 𝜌𝑔⃗ + 𝜇∇2𝑣⃗ 

contains a nonlinear term 𝑣⃗ ⋅ ∇⃗⃗⃗𝑣⃗, which can give rise to turbulence. 

As the velocity field is irregular in turbulent flows, viscosity tends 

to suppress turbulence. In flows where viscosity is dominant, 

turbulence cannot be developed. The relative strength of viscosity 

can be characterized by the ratio of the inertia term 𝜌|𝑑𝑣⃗/𝑑𝑡| and 

the viscous term 𝜇|∇2𝑣⃗|: 

inertia

viscosity
=
𝜌|𝑑𝑣⃗/𝑑𝑡| 

𝜇|∇2𝑣⃗|
∼
𝜌𝑢/𝑇

𝜇𝑢/𝐿2
∼
𝜌𝑢/(𝐿/𝑢)

𝜇𝑢/𝐿2
=
𝜌𝑢𝐿

𝜇
 . 
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Here u is a characteristic speed, L is a characteristic length scale 

and T = L/u is a characteristic time scale. The Reynolds number Re 

is defined to be this ratio: 

𝑅𝑒 =
𝜌𝑢𝐿

𝜇
 . 

When the Reynolds number is low, viscosity is dominant and the 

flow is laminar. On the other hand, turbulence usually occurs when 

the Reynolds number is high. Experiments show that pipe flow 

only remains laminar up to 𝑅𝑒 about several thousands. 

Turbulence is common in our everyday life. Whether we like it or 

not, we will have to deal with it. The following section introduces 

how engineers calculate pipe flow in the presence of turbulence. 

 

Turbulent Pipe Flow 

Darcy-Weisbach equation 

In the absence of viscosity, Bernoulli’s equation indicates that 

there is no pressure drop in a horizon pipe flow with constant 

velocity. In the presence of viscosity with laminar flows, the 

Hagen-Poiseuille equation  

Δ𝑃 =
8𝜇𝐿𝑈𝑎𝑣𝑔

𝑅2
=
32𝜇𝐿𝑈𝑎𝑣𝑔

𝐷2
                 (1) 
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predicts that Δ𝑃 is proportional to the pipe length L. The pressure 

drop per unit length Δ𝑃/𝐿 is constant. Note that engineers prefer to 

use the pipe diameter D=2R instead of pipe radius R. It terms out 

that Δ𝑃 ∝ 𝐿 is also true in turbulent flows. A dimensionless 

parameter f, called the Darcy friction factor, is introduced to 

establish the relationship between pressure drop per unit length 

Δ𝑃/𝐿, mean flow speed 𝑈𝑎𝑣𝑔, and pipe diameter D: 

Δ𝑃

𝐿
= 𝑓

1
2
𝜌𝑈𝑎𝑣𝑔

2

𝐷
       or      𝑓 =

Δ𝑃

1
2
𝜌𝑈𝑎𝑣𝑔

2
(
𝐷

𝐿
)        (2)  

Instead of pressure P, hydraulic engineers prefer to consider 𝑃/𝜌𝑔, 

which has a dimension of length. It’s called the pressure head. As 

one moves along the pipe, the pressure head decreases as a result 

of viscosity and is called head loss ℎ𝑓. Head loss is related to 

pressure drop due to viscosity by ℎ𝑓 = Δ𝑃/𝜌𝑔. Hence we can 

express ℎ𝑓 in terms of f as  

ℎ𝑓 = 𝑓
𝐿𝑈𝑎𝑣𝑔

2

2𝐷𝑔
           (3) 

This is called the Darcy-Weisbach equation. 

Equations (2) and (3) can be generalized to pipes with non-circular 

cross sections by replacing the pipe diameter D by the hydraulic 

diameter  
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𝐷ℎ ≡
4𝐴

𝐶
 , 

where A is the cross-sectional area of the pipe and C is its 

circumference (or perimeter). For a duct with rectangular cross 

section with height h and width w, 𝐴 = 𝑤ℎ, 𝐶 = 2(𝑤 + ℎ) and so 

𝐷ℎ = 2𝑤ℎ/(𝑤 + ℎ). 

 

 

Moody Diagram 

In a laminar flow, Darcy’s friction factor can be calculated 

analytically by substituting equation (1) into (2). The result is  

𝑓 =
64𝜇

𝜌𝑈𝑎𝑣𝑔𝐷
=
64

𝑅𝑒
 . 

Here the Reynolds number for pipe flows is defined as  

𝑅𝑒 =
𝜌𝑈𝑎𝑣𝑔𝐷

𝜇
 . 

Turbulent flows are more complicated, f not only depends on Re, 

but also on the surface roughness of the pipe. It is because at high 

Reynolds number, viscosity is important only in a region close to 

the pipe wall, which is called the viscous boundary layer.  
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The viscous dissipation occurs in this thin boundary layer. When 

the thickness of the boundary layer is comparable to the average 

length scale of the surface roughness of the pipe 𝜖, the ragged pipe 

surface will significantly affect viscosity. The following diagram 

shows the experimental results of f as a function of Re for various 

values of 𝜖/𝐷. This is called the Moody diagram. 

 

The table below lists the surface roughness for several engineering 

materials. 

Material Roughness 𝝐 (mm) 

Cast iron 0.26 

Commercial steel 0.046 

Wrought iron 0.046 
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Galvanized iron 0.15 

Plastic 0.0015 

Glass 0 (smooth) 

Riveted steel 3.0 

 

Laminar flow can only be maintained in a pipe flow for Re smaller 

than about 2000. When Re is between 2000 and 4000, the flow is 

in the transitional region between laminar and turbulence. We see 

“puffs” and/or “slugs” appearing sporadically and then decay due 

to viscous dissipation, but new puffs/slugs appear at later times.  

When Re > 4000, the flow becomes turbulent. We see from the 

Moody diagram that the friction factor increases substantially 

compared to that predicted by a laminar flow. For a fixed value of 

𝜖/𝐷, f decreases with increasing Re but it becomes approximately 

constant at higher Re in the “fully turbulent” region. What happens 

is that as Re increases, the viscous layer becomes thinner. For very 

large values of Re, the viscous layer is much thinner than 𝜖 that the 

effect of viscosity is entirely controlled by the surface roughness of 

the pipe and therefore insensitive to Re. 

Using Moody diagram to perform pipe-flow calculations is 

inconvenient. As a result, several attempts have been made to find 

an analytic method to approximate the experimental data. One 
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popular method is called the Colebrook formula, where f is 

calculated by the equation  

1

√𝑓
= −2 log10 (

𝜖/𝐷

3.7
+
2.51

𝑅𝑒 √𝑓
)         (4) 

This formula produces f that differs from experimental results by 

less than 15%. Note that f appears on both sides of the equation. 

This means that f has to be solved iteratively, which is fairly easy 

with modern digital computers.  

 

Velocity Profile 

In laminar flows, the Hagen-Poiseuille equation predicts a 

quadratic velocity profile in the pipe: 

𝑢(𝑟) = 𝑈𝑐 (1 −
𝑟2

𝑅2
)       ,             (5) 

where 𝑈𝑐 = 𝑢(0) is the central velocity in the middle of the pipe. 

In turbulent flows, the velocity profile can be approximated by  

𝑢(𝑟) = 𝑈𝑐 (1 −
𝑟

𝑅
)
1/𝑛

  ,            (6) 

where n depends on the Reynolds number, increasing from 𝑛 = 6 

at 𝑅𝑒 ≈ 2 × 104 to 𝑛 = 10 at 𝑅𝑒 ≈ 3 × 106 in a nearly linear 

fashion in log(𝑅𝑒). The following plot shows the velocity profiles 

for a few values of n, as well as the profile in a laminar flow. 
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We can see that as n increases, the velocity decreases more slowly 

with r/R at the beginning but drops more sharply to 0 near r=R. As 

viscosity is only important in the viscous layer, the flow speed 

does not change significantly outside the layer but decreases 

rapidly inside the layer. As Re increases, the viscous layer becomes 

thinner, causing the rapid drop in flow speed close to the pipe wall. 

This is why n increases with increasing Re. 

Another useful concept in a pipe flow is the correction factor to the 

kinetic energy. The kinetic energy carried by the pipe flow per unit 

time is given by 

𝐾 =∬
1

2
𝑣2(𝜌𝑣𝑑𝐴)

 

𝐴

=
1

2
𝜌∬𝑣3𝑑𝐴

 

𝐴

 ,  
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where the integral is over the cross-sectional area of the pipe. The 

correction factor 𝛼 is defined such that K can be written as  

𝐾 =∬
1

2
𝛼𝑈𝑎𝑣𝑔

2 (𝜌𝑣𝑑𝐴)

 

𝐴

=
1

2
𝛼𝜌𝑈𝑎𝑣𝑔

2 ∬𝑣𝑑𝐴

 

𝐴

= 𝛼𝐴
1

2
𝜌𝑈𝑎𝑣𝑔

3  . 

Hence 𝛼 is given by  

𝛼 =
1

𝐴
∬(

𝑣

𝑈𝑎𝑣𝑔
)

3

𝑑𝐴

 

𝐴

 

For the laminar-flow velocity profile given by equation (5), it’s 

easy to show that 𝛼 = 2. For the turbulent-flow velocity profile 

given by equation (6), the integration can also be carried out 

analytically, resulting in  

𝛼 =
(𝑛 + 1)3(2𝑛 + 1)3

4𝑛4(𝑛 + 3)(2𝑛 + 3)
 . 

For turbulent flows with n=6 to 10, the values of 𝛼 ≈ 1.1. Hence, 

one may use 𝛼 ≈ 1 for turbulent flows. 

 

Practical Head Loss Equations 

The following modified Bernoulli’s equation is often used in the 

pipe flow calculations: 

𝑃1
𝜌𝑔
+ 𝛼1

𝑈1
2

2𝑔
+ 𝑧1 + ℎ𝑝𝑢𝑚𝑝 =

𝑃2
𝜌𝑔
+ 𝛼2

𝑈2
2

2𝑔
+ 𝑧2 + ℎ𝑓 + ℎ𝑡𝑢𝑟𝑏𝑖𝑛𝑒   
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Here 𝑧1 and 𝑧2 are the height measured from a reference point. 

There are a few things to notice when compared to Bernoulli’s 

equation: 

 Each term has a dimension of length.  

 There are correction factors 𝛼1 and 𝛼2 in the kinetic energy 

terms because the speeds 𝑈1 and 𝑈2 refer to the average 

speeds. 

 The head loss due to viscosity ℎ𝑓 appears on the right hand 

side of the equation. It’s computed by the Darcy-Weisbach 

equation. [Equation (3)]. 

 The term ℎ𝑝𝑢𝑚𝑝 is the head gain by a pump (if present). 

 The term ℎ𝑡𝑢𝑟𝑏𝑖𝑛𝑒 is the head loss by a turbine (if present). 

 

Let’s look at a few examples to illustrate how this equation can be 

used in pipe flow calculations.  

 

Example 1: Oil, with 𝜌 = 900 kg/m3 and 𝜈 = 𝜇/𝜌 = 10−5 m2/s, 

flows at 𝑄 = 0.2 m3/s through 500 m of a 0.2m-diameter cast iron 

pipe (roughness 𝜖 =0.26 mm). Determine the head loss and 

pressure drop if the pipe slopes down at 10∘. 
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In steady state, the flow rate Q=0.2 m3/s is constant. The pipe 

radius D=0.2m. Therefore,  

𝑈1 = 𝑈2 =
𝑄

𝜋𝐷2/4
= 6.37m/s . 

The Reynolds number is  

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
=
𝑈𝐷

𝜈
= 1.27 × 105 . 

Hence the flow is turbulent. The roughness parameter is 

𝜖/𝐷 =0.26mm/0.2m=0.0013. From the Colebrook equation I find 

𝑓 = 0.0227. The head loss is given by the Darcy-Weisbach 

equation: 

ℎ𝑓 = 𝑓
𝐿𝑈2

2𝐷𝑔
= 117 m. 

There is no pump and turbine here. The modified Bernoulli’s 

equation becomes 

𝑃1
𝜌𝑔
+ 𝛼

𝑈2

2𝑔
+ 𝑧1 =

𝑃2
𝜌𝑔
+ 𝛼

𝑈2

2𝑔
+ 𝑧2 + ℎ𝑓 . 

The velocity terms cancel and so the pressure drop is given by 
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Δ𝑃

𝜌𝑔
= ℎ𝑓 − (𝑧1 − 𝑧2) = 117 m − (500m) sin 10

∘ = 30m 

⇒   Δ𝑃 = 𝜌𝑔 (30m) = 2.65 × 105Pa . 

 

Example 2: The pipe in the previous example is connected to a 

horizontal pipe of length 100 m. The pipe is also made of cast iron 

but with diameter 𝐷 = 0.25 m. Suppose the flow rate remains the 

same (Q=0.2m3/s). Calculate the head loss and pressure difference 

in the second pipe.  

 

The flow speed in the horizontal pipe is  

𝑈3 =
𝑄

𝜋𝐷2/4
= 4.07m/s , 

which is slower than 𝑈2 because of the larger pipe diameter. The 

Reynolds number is 𝑅𝑒 = 𝑈3𝐷/𝜈 = 1.02 × 10
5 and roughness 

parameter is 𝜖/𝐷 = 0.26/250. The Colebrook formula gives 𝑓 =

0.0223. Hence the head loss is  

ℎ𝑓 = 𝑓
𝐿𝑈3

2

2𝐷𝑔
= 7.54m . 
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Since the pipe is horizontal, 𝑧2 = 𝑧3. It follows from the modified 

Bernoulli’s equation that 

𝑃2 − 𝑃3 = 𝜌𝑔ℎ𝑓 +
1

2
𝜌(𝑈3

2 − 𝑈2
2) = 5.6 × 104Pa . 

 

Example 3: A 10-meter garden hose is made of PVC with surface 

roughness 𝜖 = 0.03 mm. The pipe diameter is 𝐷 = 0.0125m and 

the pressure difference between the two ends is Δ𝑃 = 2 × 105 Pa. 

The density of water is 𝜌 = 1000 kg/m3 and viscosity is 𝜇 =

10−3Ns/m2. Calculate the flow rate. 

The pipe can be regarded as horizontal. Since the flow rate is 

constant, the average speed is the same everywhere in the pipe. 

The modified Bernoulli’s equation becomes Δ𝑃 = 𝜌𝑔ℎ𝑓.  

First assume the flow is laminar. The Hagen-Poiseuille equation 

gives  

𝑈 =
Δ𝑃

32𝜇𝐿
𝐷2 = 97.66m/s 

The Reynolds number is 𝑅𝑒 = 𝜌𝑈𝐷/𝜇 = 1.2 × 106. So the 

laminar assumption is not valid. The flow must be turbulent. It 

follows from the Darcy-Weisbach equation (3) that  

𝑈 = √
2𝐷𝑔ℎ𝑓

𝐿𝑓
 .                 (7) 
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Combining this equation with the Reynolds number 𝑅𝑒 = 𝜌𝑈𝐷/𝜇 

gives  

1

𝑅𝑒√𝑓
=
𝜇

𝜌𝐷
√

𝐿

2𝐷𝑔ℎ𝑓
 .            (8) 

Combining the Colebrook formula (4), equations (7) and (8) yields  

𝑈 = −2√
2𝐷𝑔ℎ𝑓

𝐿
log10(

𝜖/𝐷

3.7
+
2.51𝜇

𝜌𝐷
√

𝐿

2𝐷𝑔ℎ𝑓
) . 

Since Δ𝑃 = 𝜌𝑔ℎ𝑓, the above equation can be written as  

𝑈 = −2√
2𝐷Δ𝑃

𝜌𝐿
log10(

𝜖/𝐷

3.7
+
2.51𝜇

𝜌𝐷
√
𝜌𝐿

2𝐷Δ𝑃
) . 

With Δ𝑃 = 2 × 105 Pa, 𝐿 = 10 m, 𝐷 = 0.0125 m and 𝜖 = 0.03 ×

10−3 m, I get 𝑈 = 4.29 m/s. The corresponding Reynolds number 

is 𝑅𝑒 = 𝜌𝑈𝐷/𝜇 = 5.4 × 104. The flow rate is 𝑄 = 𝜋𝐷2𝑈/4 =

5.26 × 10−4 m3/s. The garden hose flow rate is sometimes 

expressed as gallons/minute. Since 1 galloon = 0.00378541 m3, 

this flow rate is equivalent to 8.34 gallons/minute. 
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Summary 

These are the master equations for fluid dynamics, made with 

certain simplifying assumptions such as constant, homogeneous 

viscosity that is independent of flow velocity, pressure, 

temperature, and so forth. 

 

Conservation of mass (“Continuity Equation”) 

 
 

, , ,
0 (fixed , , )

x y z t
v x y z

t





  


 

 

Conservation of momentum (“Navier-Stokes Equation”) 

𝜌 (
𝜕𝑣⃗⃗

𝜕𝑡
+ 𝑣⃗ ⋅ ∇⃗⃗⃗𝑣⃗) = −∇⃗⃗⃗𝑃 + 𝜌𝑔⃗ + 𝜇∇2𝑣⃗    

 (Newtonian incompressible fluid) 

 

Conservation of Energy (“Bernoulli’s Equation”) 

21
constant (incompressible, non-viscous fluid)

2

P
v U


    

 

The Navier-Stokes equations are nonlinear, and capable of 

producing the chaotic behavior—turbulence—that is observed in 

many fluid systems. 
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There are loads of concepts in fluid dynamics that I have 

omitted—Mach number, supersonic flow, and so forth.  

 

————  ———— 

 


