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Convective Derivatives and Partial Derivatives

0
Partial time derivative —q: rate of change of qg(t,x,y,z) at a fixed location.

ot
dq

Convective time derivative —: rate of change of g along a path.

dt
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Continuity Equation |

Net mass flow rate in the x-direction:
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Continuity Equation i

Similarly, net mass flow rate in the y and z directions are

. 0 | 0
Amy, = — a—y(pvy)AV , Am,=— a_z(va)AV

Total mass flowing into the volume/time is

0 0 0 0 -
Am = —(pAV)=— |—(pv,) + —(pv,) + —(pv.)| AV ==V - (pv)AV
Ey (pAV) n (PVy) 5 (pvy) > (pv,) (pv)
P ~7 -
— 4+ V.-(p»)=0
: (pv)

This is called the continuity equation.



Continuity Equation il

Suppose we follow the motion of the fluid.
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For incompressible fluid, dp/dt = 0. Henc V.9=0.



Integral Form of Continuity Equation

MzL/pdV L

b

~ O\

Rate of increase in mass inside a volume V = net mass flow into the volume per unit time.



Example 1: Flow Tube

Area=A,

Al'ea=A2 V. =

VZ"‘

Consider air flowing from a tube with cross-sectional area A, into a region with

cross-sectional area A,.
In steady air flow, dM/dt = 0.

PVIA = pyrA,



Example 2: Water Leak

There is a small hole at the bottom of a container and water leaks
out from the hole at speed v.

>

The water level y decreases slowly.

dM  d(pV) "
— = — NV v
dt — dt e l
14
A,: area of the hole. V = Volume of water inside the container.
1% , |
— = A(y)y A(y): cross-sectional area at y
: A,
y —

— 1%
A(y)



Momentum Equation

Net force associated with pressure in x-direction:

Ay Az Ay Az y (x, 64 a5 A_y} Z i g)
A];=P<x,y+—,zl )AyAz—P<x+Ax,y | , 2 )AyAz . 2 2
2 2 2 2 :
— aPA AyA <
= — g AQYAZ Ay»*,i __________ * .
— a_PAV Ax AZ)
0X 7 .
Similarly, Af, = — a—PAV Af. = — a—PAV (x L\ ' el
» =y Jy ’ Z 07 . ’y+2’Z+2)

Total net force associated with pressure:

= o°P  oP _  OP _,
Af=—|—X+—y+—2 ) AV == VPAV
0X dy 07



Momentum Equation (cont)

In addition to pressure, gravity also acts on the fluid:

Af=— VPAV + (pAV)g

From Newton’s second law:

-

d _
(pAV)y‘; — _ VPAV + pgAV

VP

av o . =, R
=—+4+Vv-Vyv=— + g

di ot

This Is also called Euler’s equation.

It describes the conservation of momentum of an ideal fluid (i.e. without viscosity).



The Meaning of V- V7
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If v is represented by a row vector, V v represented by a 3 X 3 matrix, v - Vv can be
represented by a row vector by
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<
<l
1
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dv, Ov, O,
ox  ox  ox
e JEN ov ()vy oV
3. Vr=( Vv )| D 2
dv, O0v, Ov,




Hydrostatics

. dv VP
Momentum equation: — —

R 4+ 0
dt 1o, 5

Hydrostatics: v =0 = VP = pg

Pressure gradient is parallel to § = surface of constant P (isobar) is perpendicular to §
0=VXVP=Vpxg

= density gradient is parallel to § = surface of constant p is perpendicular to §

Let ¢ = gZ (£ points downward), P = P(2), p = p(2).

. dP_ A
VP=—2=pgz
dz



Hydrostatics (cont)

dP

d_z_pg

P(z) = [p(z)gdz

Consider a cylinder with cross-sectional area A and height z.

P = ( [pona:) e
Z—A P\L <) 8= A

Pressure at depth z is the weight of the fluid per unit area above Zz.

For incompressible fluid, p(z) = p is constant,

P(z) = pgz




Mercury Barometer

yacuum

-

A

P = pHggh

Standard atmospheric pressure = 101kPa ~760 mmHg



Archimedes’ Principle

Consider an object floating stationary in a fluid.

Buoyant force acting on the object:

FbllOy — /[ P dX
surface

Imagine removing the body and replacing it by fluid.

Pressure P(z) and density p(z) remain the same.

Hydrostatic eq: V P = pg

J V PdV = Jpgdv = J PdA = Mg
V

surface

Mf: mass of the fluid displaced by the object.

Archimedes’ principle: Fbu()y = — Mf§ (buoyant force = weight of fluid displaced by the object)



Tip of the Iceberg

Density of ice p; = 920 kg/m3

Density of sea water p,, = 1027 kg/m3
V_ . volume of iceberg above water

V . total volume of iceberg

In static state, weight of iceberg = buoyant force

p;iVg =p,(V—=V,)g

Va _Pv=Pi _ 510 Credit: clipground.com

V Py

Only 10% of the iceberg is above the sea water!


https://clipground.com/iceberg-clipart.html

Earth’s Atmosphere |

Earth’s atmospheric pressure Is closely approximated by the hydrostatic equilibrium.

Let ¢ = — gZ (£ points upward).

dP | 1o,
— = —pg ideal gas law: P = nkT = —RT
dz M

R = N,k = 8.31J/(mol K) = gas constant

M: molar mass of air = 0.02896 kg/mol (78% N2, 21% O2, 0.9% Ar and small amount of other gases)

dP Mg dP Mg
— = P = —= dz
dz RT P RT

P(z) = Pyexp —r Vg dz’
o RT(Z)

Po: pressure at z=0.




Earth’s Atmosphere I

*If T = To = constant (isothermal)
P(2) = Poe_MgZ/RTO (isothermal)

*If I'=1,— Lz (L is called the temperature lapse rate):

Mg/RL
Lz
P(z) =Pyl 1 —— (lapse)
1

Recall:

. X ' : X , X
Im{1+4+—) =lmexp|lkln[{]14+—= )| =lmexplk-—]) =¢€"
k— o0 k k— o0 k k— o0 k

The lapse equation reduces to the isothermal equation in the limit L — 0.




Earth’s Atmosphere lli

More realistic atmospheric model divides the atmosphere into
several layers. Each layer has its own temperature lapse rate:

Mg/RL,
Lb (Z — Zb)

1

Pz =P, |1 -

P, : pressure at the bottom of layer b.

13, : temperature at the bottom of layer b.

L, : temperature lapse rate in layer b.

Z;, - altitude at the bottom of layer b.
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Credit: NOAA



https://www.noaa.gov/jetstream/atmosphere/layers-of-atmosphere

Earth’s Atmosphere IV

Sub- Geopotential Static pressure Standard  Temperature lapse
script b height above mean temperature rate
z, Sealevel (z) P, (K) L,
m) () (Pa)  (inHg) Iy, m) @i

0 0 0 101 29.92126 288.15 0.0065 0.0019812
325.00

1 11 000 36,089 22 6.683245 216.65 0.0 0.0
632.10

2 20000 65,617 5474.89 1.616734 216.65 -0.001  -0.0003048

3 32000 104,987 868.02 0.2563258 228.65 -0.0028 -0.00085344

4 47000 154,199 11091 0.0327506 270.65 0.0 0.0

S 51 000 167,323 66.94 0.01976704 270.65 0.0028 0.00085344

6 71000 232,940 396 0.00116833 214.65 0.002  0.0006096

Credit: Wikimedia (https://en.wikipedia.org/wiki/Barometric_formula)




DPS 310 Pressure Sensor

According to Adafruit, their DPS 310 pressure sensor can measure the
change in pressure to an accuracy of 0.2 Pa.

dP Mg MgP
= P = AP = — Az
dz RT RT

Credit: Adafruit

AP = 0.2 Pa corresponds to Az = 1.7 cm for M = 0.02896 kg/mol,
P =101 kPa, and T = 300 K.


https://www.adafruit.com/product/4494

Class Demonstration
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Energy Equation

—

dv VP
Momentum equation: — = — + g
dt I,
. dv V- VP Ldv 1d . . d [
Ve— = — +v-g , Ve—=——0-v)=—| —
dt P dt 2 dt dr \ 2
g = — VU, U = gh is gravitational potential, h is height from a reference point.

Gravity is static near Earth’s surface, dU/dt = 0.

dU  oU
dt ot

d(l . ) V- VP
— | =v"+U |+ =0
2 P

+3-VU=%-VU=-7-3

dt



First Law of Thermodynamics

Consider a fluid element in a small volume V.
Mass m = pV, internal energy is E. First law of thermodynamics: dE = dQ — PdV

d( is the amount of heat added to the volume. In the absence of heat generation and heat

dE dV
flow, dD=0. The system is said to be adiabatic and — = — P——. Divide the equation by the

dt dt

mass m = pV and write w = E/m (specific internal energy).

dw P dvV Pd(V)_ Pd(l)_ d(P>+1dP
d  pVd dt\pvV) < dt\p) di\p) p dt

d( P) 1dP 10P 73-VP
—(w+—)=———=——+
I,

¥ # \/*d\l

V- VP d ( P) 1 oP Volume moves with the fluid element
o,

- —— m=pV = (p+dp)(V+dV)



Bernoulli’s Equation

Previous slides:

d(l , ) V.- VP v.-VP d P\ 1oP
—(=v*+ U )+ =0 =—(w+— ) ———
dr \ 2 1o, I, dt I, p Ot

Combine these two equations:

d (1, P 1 oP
— | =V +—+U+w) =——
dr \ 2 1o, p Ot

In steady flow, dP/0dt = 0, the resulting equation is called Bernoulli’s equation.

d (1, P
— | =v"+—+U+w ) =0
dt \ 2 p

dw d (1 | | | d (1 , P
Recal; — = — P— | — | = O for incompressible flud = —|—Vv*+—4+ U] =0
dt dt \ p dr \ 2 1o,



Bernoulli’s Equation and Streamline

1, P
Let b=—v"+—+gh+w
2 p
db
Bernoulli’s equation = — =0=>0b
2 n 3

=
T
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Figure 4.8: Flow through a rapidly-expanding pipe.

Figure credit: J.M. McDonough, Lectures In Elementary Fluid

Dynamics: Physics, Mathematics and Applications

constant along a streamline

Bernoulli’'s equation doesn’t apply to
turbulent flows.

* Turbulent flows are usually not steady
* No well-defined streamlines
*Viscosity is important


https://uknowledge.uky.edu/me_textbooks/1/
https://uknowledge.uky.edu/me_textbooks/1/
https://uknowledge.uky.edu/me_textbooks/1/

Example

Water is flowing out of a rectangular tank from a small hole at the
bottom. How long does it take to excavate the water from the tank?

Apply Bernoulli’'s equation at the top and at the hole:

L, P 1, P o
2 P ) P

. Ay
Previously, we find y = — XV

A, : area of the hole, A: cross-sectional area of the tank.

A\
= 1_E ve=2gy
~1/2
Aj
v =1/2gy - ~y/28y forA, < A

This is the free-fall speed from y. As the water level drops, the speed also decreases.

Free fall from y:

L,
—my- = m
) gY

= v =4/28y




Example (cont)

Ay,

Rate of change of water level: y = — < V=" —\/ 28y A
d A

> _ _Lh 29dt 4
VAR
Let yo = y(# = 0) . Integrate both sides: | !

" dy’ A A ]
[ . _Th 26t 2\/§—2 YO:__h 28 1

yo VY A A

2
A
Y= (W A %f)
2, A

A
Setting y(T') = 0 gives T = —\ —— = — X free-fall time.

Ay, g Ay,




Example (cont)

_A 2
T_Ah\ g

For y;=0.3 m, A/A, =40, T = 10s.

Bernoulli’'s equation only applies to steady flow.

It’s still a good approximation if the rate of change is sufficiently slow, Vl
which requires 1" > dynamical time scales.

Two dynamical time scales:

(1) Time associated with pressure ~ time for sound to travel y, :
T = yy/c, . Sound speed in water =~ 1500 m/s, 7 = 0.0002s < T.

(2) Time associated with gravity ~ free-fall time.
T'= A/A, X free-fall time = 40 free-fall time.

Relative error in estimated T ~ 1/40 =2.5%.



Vorticity
Vorticity is defined as @ = V X V. In Cartesian coordinates,

dv, 0v, c (6vx dvz)y_l_ v,  ov, :

w=—-—-—— — — — —
dy 0z 07  Ox ox 0y

It describes the local spinning motion of fluid.
Consider the velocity in the fluid near a vortex looks like this: @

The velocity field is given by v = Q X 7, where Q is a constant vector.

In cylindrical coordinates with £ = €27, we have v, = Qrand v, =v, = 0.

—

w =——/rv,)z = 2027
r&r( ¢)

The fluid is irrotational if @ = 0.



Vector Derivatives in Cylindrical Coordinates

CYLINDRICAL dl=dr? +rdpd +dzz; dv = rdrded:
g . . 10t % B .
r ¢l

Gradient. Vit = % TR 3,2

Divergence. Vev = i :r (rv,) - : %Qg | (3;;’

Curl. VXv= :: %:}; %v;—f + :%vz, %?i’_$
12w -3

Laplacian. Vit = : :r (r g—t;) - rlz g;tz i g%



Circulation

Circulation is closely related to vorticity

Circulation of a fluid around a closed loop is defined as

r=ﬂgv-d7

Stoke’s theorem:

-

F=J (Vx?)-d§=[ w - dS
S S

If the flow is irrotational, @ =0 =1 = 0.

Credit: Wikipedia



https://en.wikipedia.org/wiki/File:General_circulation-vorticity_diagram.svg

Shearing

—

Shearing can occur when neighboring fluid moves with different velocities.

>V2

In the presence of viscosity, the shear motion develops a viscous stress that opposes
the motion.

<>
The stress acting on a fluid element can be characterized by a stress tensor 1.

> vl N VIS

1
> V1S
V) o




Simple Model of Viscosity

ov (x,y+ dyl2,z) ;

I]is — H 0 XdZ dz
y 22 — -V =v, (x,y+dy,z)x
vis _ _ v (x,y — dy/2,z) Tl . zvis Ly =V, x,y,z)x
2 H xazg .
dy x T V=v,(x,y—dy,z)X

u . coefficient of shear viscosity

' ° - 02" 32\/ v.(x —dx,y, 2k v(x +dx,y,2)x
Net force [ = f1" + f5° = u X dxdydz = y—=dV y>Z Y, 2
dy* dy> : S ey e
Adding the contributions from the other two directions: Z V=, (%.),2)3
. v, v, 0% ,
fxt = H +—+ dV = uVv,dV

ox2  oy? 072

The y and z-components of the viscous force are obtained by changing v . to v, and v.,.

Viscous force: £Vis = u V2dV



Stress Tensor

 Stress tensor can be represented by a 3 X 3 matrix. In Cartesian coordinates,

Txx Txy sz
<>
T = Tyx Tyy TyZ
TZX TZ)’ TZZ

 Force acting on a small surface dA = hdA is given by

d?z?-ddeA(T n+T n+T n)Xx+dA(T,.n +T, n+T n)y+dA(T. n +T n +7T n)z

xx'x xy' "y X7 7 yx'tx yy' 'y VZ''Z XX Zy' "ty 772

Txx Txy sz n

X

n
sz sz Tzz < \/

<>

* It can be shown that 7" must be symmetry: T;; = T},



Rl
h
~{
L
>

Note the negative sign since d A points outward.

Divergence theorem:

— — €
Fz—[ V- TdV
V

V. T =
dx

Force per unit volume: f =

Yy

<y

Force on Fluid




Viscous Stress Tensor

The stress tensor of an ideal fluid is T = PG, where G is called the metric tensor angis

represented by an identity matrix in Cartesian coordinates. In Cartesian coordinates, 1 is
represented by a diagonal matrix

dF = PdA

. ([P 0O
T=(0 P O /X

0 0 P

— <> —> —
Force actingonasmallareaisdF = T -dA = PdA . Force is isotropic (same magnitude in
every direction). Force per unit volume is

— — . :——x—— ——Z——
0X 6yy 07
<>

In the presence of viscosity, 1 = PG -+ (? T IS called the viscous stress tensor.

Viscous force actingon asmallaresisdF ;. = 7 - dA

. : . L7 v
Viscous force per unit volumeis f.. =—V - 7



Momentum Equation with Viscosity

d —
Momentum equation: (pdV)?‘; =—dVV - ?+ (pdV)g

dv V.-T+p8
pdt P8
<> <> <>

Need an expression for 7 that depends on the velocity field V.

T =+ 0 only for non-uniform ¥, but 7 = 0 if the fluid is rigidly rotating.



Velocity Gradient Tensor (2

ox
= - L = v,
The velocity gradient tensor V v can be represented by a matrix: Vv = a‘;
ov,
07
<« : ~ = . <>, ~ = .
T is symmetric, but V v is not. Cannot express 7 in terms of V v directly.
— . dvj
Decompose V v into 3 components: ( V v)lj = 0_ = —6’51:,. + 1, + 0;;
Aj
Expansion: 0 = Tr(Vv) =V -y
Anti-symmetric partof Vv : r=— — ——
2 a.xi ax]
_ — 1 an 8vl 1
Symmetric trace-free partof Vv :io;=— —+— | — —6’51:].
2 Oxl- ax] 3



Physical Meaning of ¢

Consider a small fluid element occupying a small volume AV and mass Am = pAV.

Moving with the mass, we have

0= i(pAV) = AVd—p + pdAV
dt dt dt
. _dp = -
Continuity equation: — =—pV - v=—p0
—p6’AV+,0dAV = ()
dt
1 dAV
AV dt

0 is the fractional rate of increase of fluid element’s volume.



| aVy an 1 — 5 |
l”xx=l”yy=rZZ=(),rxy=—l”yx=5 E_ay ZE(VX\/)Z=EQJZ
1 1
Similarly, ry,, = — 1, = —w, , I;, = — I, = Ea)y
0 o, -o
1
r=—|-w, 0
2
0, —ao, 0

% describes the local rotation of fluid.
T Is symmetric but 7 Is anti-symmetric. T cannot depend on r.

T is symmetric and trace-free. It describes the shear motion of fluid.

—



Bulk and Shear Viscosity

Simple model of viscosity: 7 = — (0G — 2u ¢ or in component form:

le —_ C@él] — 2/161]
. coefficient of bulk viscosity, i : coefficient of shear viscosity.
Bulk viscosity resists the fluid’s expansion and contraction.

Shear viscosity resists the fluid’s shear motion.

In general, bulk viscosity << shear viscosity.

Another quantity is kinematic viscosity v = u/p



Navier-Strokes Equation

7V5) == VPapg-V | Fo-uF

an avi
—— 4+ — ] for incompressible fluid (@ = 0).
axi a.x]

£13
N~
|
W | BN
=
O
n
<.
|
|
=
N\

S . 0 0
= Z X — Z T = V(V - v) = 0 for incompressible fluid.
e~ T ox. \ “~ ox




Navier-Strokes Equation for Incompressible Fluid

—

For incompressible fluid, V - 7 = — u V?v.

W 15.55) = VP4 pg+ a7

— = FVv:. VvV | = — V

pdt P Y pE T H
Or

v o _ —. VP _

— = Ve Vy= Fg+ v VY

dt ot I,

v = ulp : kinematic viscosity




Evolution of Circulation

-

v-dz=J = dS

Circulation: 1 '(7) = ﬂg
S(t)

C(1)

Suppose the loop C(¥) follows the fluid’s motion. Then

dI’ d . dv . dx
— = —(v -dx) = — - dx + Ved| —

. dx N | ,
vedl— | = V-dy=— dv- =10
(1) dt C(1) 2 Jew

Navier-Stokes equation: — = — +g——V .71
dt P P

dT VP o 1 — o
— = — - dx + g dx — —(V - 7)-dx
dt cwy P C(t)

C(1)



Kelvin’s Circulation Theorem

ﬂg g’-ﬁ:J (ng)-cﬁ:—[ (VX VU)-dS=0
C(¢) S(t) 5(®)

VP . VP q VoxXVP .
—4; . d¥ —[ V x -dS=J p2 . dS
ce) P S(f) P S(f) P

dl 7 xVP 5 ] —
_ZJ P 2 .ds_ﬂg —(V -9)-dx
dt S(¢) P c(t) P

If the fluid is barotropic: P = P(p), VP = - Vpandso VpX VP =0.
1,

dl
= () for barotropic, inviscid flow.

dr

C()



Water flowmg through Cylindrical Pipe |

Continuity equation: —+ V - (pY) = 1
y €q Ey (pv) = P
In cylindrical coordinates,
H

0 dpv,) 1 d(pv d(pv,) X
9 , Opv) 1 (P9)+ PV _ 4
ot or r 00 07
Looking for a steady solution (dp/0dt = (), axisymmetricand v, = v, = ()

ov,
> —=0, =2v,=v,(r)

07

Navier-Stokes equation:
pl—+Vv- Vv ]| == VP+pg+uV-y

Set dv/dt = 0 and write P = pgH + P,, where H is height from a reference point.



Water flowing through Cylindrical Pipe i

P=pgH+P, = VP=pgH+ VP, =—-p3+ VP,
Navier-Stokes equation becomes pTz’ . VT} — Vpl + u V27

Gravity is eliminated by the pgH term. In the following, | will drop the subscript 1. So P means P,
(pressure - pgH).

r-component:

( ov. Vvyov. Vv 6\/2) oP la (1 6(rv,,)> 1 0°v. 2 0vg 62\/,,]
plv—=L+2—L Ly L) =c—+pu|— (- + - ——

" or r 00 r < 0z r  or 2002 12 00 07?2

oP
> — =0, P=P®
or

ov, v, O0v ov oP 19 / ov 1 v, 0%y
z-component: p (vr—z + 224y _Z> — + u [__ ( Z) n . z]

— — I/'_ —
or r 00 < 0z 07 r or or r2 002 072



Water flowing through Cylindrical Pipe Il

dP _H d dv — :
dz T rdr dr O _, ' )

LHS is function of z, RHS is function of r. |
dP K d [ dv,
r— | = k = constant
dz r dr dr

Let L be the length of the pipe. Integrating dP/dz = k from z = 0 to z = L gives

AP = kL ork = — AP/L, where AP = P(0) — P(L) is the pressure difference between the
two ends of the pipe.

u d ( de> AP dv, AP J AP
rdr = —

= — > r— =
L dr ul 2ul

r2+C1

AP

VZZJ(_ I/'+—>d7'=— r2+C11n7‘+C2
4ul




Water flowing through Cylindrical Pipe IV

v.(r) = — r+Clnr+C —
A7) 4/4L 1 2 R@ - )

Boundary conditions of v, :

(1) finteatr =0 = (;, =0,
AP

2 v,=0atthewallatr =R = (, = R?
4ul.
)= AP o re 0) AP
v.(r) = — — Y =
4//tL R? < 4nul

Average flow velocity is

(v,) = : [Rjzﬂ A7 R? 1_r_2 rdrdf = AP [R r—r—B dr
) = =
nR*> ), ), 4uL R? 2ul J, R?

() = APR? 1 0)
V,) = = —V
SuL 2 ¢




Water flowing through Cylindrical Pipe V

AP r? R —
v =—~r*(1-2 .
dul R? —

AP L
(v,) = R*
SuL
Flow rate:
7AP R*
= 7R*(v.) =
0 = aR¥v) ==

This is called the Hagen-Poiseuille equation.



Reynolds Number and Turbulence

Navier-Stokes equation: 'OE = p — +v- Vv ) == VP+pg+uV-y

inertia  pldv/dt|  pulT  pul(Llu)  puL

V1SCOSIty B u| Vv | uulL? puulL? 7
pul
H

Reynolds number: Re =

L: characteristic length scale, u: characteristic speed. T = L/u: characteristic time.
Low Reynolds number — flow dominated by viscosity — laminar
High Reynolds number — flow dominated by inertia — turbulence

Experiments show that pipe flow only remains laminar up to Re ~ 10° — 10°,
depending on the smoothness of pipe’s entrance and roughness of its walls.



Flow around Sphere with Different Re’s

Re << 1

—K\NE

\_/M
(A)

streamlines symmetrical fore and aft,
qualitatively like inviscid flow

creeping flow; Stokes' Law holds

disturbance in velocity extends many
sphere diameters away

Re =10-100

—_@'

S

(C)

there's a ring or "doughnut" with closed
circulation behind sphere. it's stable
outside the ring, streamlines depart from
sphere surface; precursor to fully
separated flow

Re 10 100

D 0.27 mm 0.81 mm
W 3.7cml/s 12.4 cml/s

Re =1

——‘f/_\\
—_— N\ —
(B)

O streamlines converge more slowly 107
than diverge
O still creeping flow, Stokes' Law holds Cp
to about this point
O disturbance in velocity still extends 102
far away 1
Re 1
D 0.11 mm
W 0.9 cmlis
Re =10-150
____/<_>%<_’>
SO

(D)

O the ring vortex oscillates back and 10
forth in position with time

10°

Re 100 150
D 0.81 mm 0.99 mm
W 124cm/s 15.3 cml/s

Credit: MIT OpenCourseWare

1

(=)

Ve

AM
(=)

Re = 150 - thousands

(E)

cyclic shedding of ring vortices:

ring breaks away, drifts downstream
in wake flow, degenerates; a new ring
forms behind sphere

Re 1000 10,000
D 2.8 mm 15.5 mm (a marble)
W 3.5cm/s 80 cm/s

Figure by MIT OpenCourseWare.

GEL
O O OO

Re = thousands - 2 x 10°

e oa

e et

L w2
(F) 4

10
gradual development of sharply
separated flow C
. . D
gradual decrease in regularity of
vortex structure in wake of sphere -2
. 10
until fully turbulent 10°

boundary layer is progressively

thinner on front surface
boundary layer still laminar

Re 10,000
D 125 mm
W 80cml/s

Re > 2 x 10°

boundary layer is turbulent
separation point is farther back
along sphere surface

drag decreases abruptly in change
from lam. to Turb. BL ("drag crisis")

200,000
96 mm (a grapefruit)
210 cml/s

Re 1,000,000
D 219 mm (almost a basketball)
W 460 cm/s (15 fps)


https://ocw.mit.edu/courses/12-090-introduction-to-fluid-motions-sediment-transport-and-current-generated-sedimentary-structures-fall-2006/7841d9b1681d6748fa2f5cbc6d6f1cb2_ch3.pdf

Darcy’s Friction Factor and Head Loss

8uLU,,, 32uLU,
Hagen-Poiseuille equation: AP = V8 _ Ve
R? D2

Here D = 2R is the pipe diameter, U, = (v,) is the average flow velocity in the pipe.

In the absence of viscosity, Bernoulli’'s equation:

R —
1 1 -
SPvi + Py+ pghy = —pvy + Py + pghy @ — )

For a horizontal and steady flow, AP = P, — P, = 0.

In the presence of viscosity, AP <« L. Define a dimensionless parameter called Darcy’s friction factor:

1
AP _ 3P Uzyg s _AP ( D )
— = or = —
1
L D EpUc%vg L

AP LU,

Head loss is defined as hf = = hf =f (Darcy-Weisbach equation)
P8 2Dg




Darcy’s Friction Factor and Head Loss (cont)

For pipes with non-circular cross section, f and hf are defined by replacing the pipe diameter D

4A
by the hydraulic diameter D, = —.

P

A : cross-sectional area of the pipe, P : perimeter of the pipe.

dwh
2w+ h)

For a duct with rectangular cross section with height h and width w, D, =

For laminar flow in a cylindrical pipe, Hagen-Poiseuille equation gives

= 64 64
B pUgD ~ Re
. PYavgD
where the Reynolds number is calculated by Re = .
H

In the presence of turbulence, f also depends on the surface roughness of the pipe €.



Moody Diagram
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Credit: J.M. McDonough, Lectures In Elementary Fluid Dynamics: Physics, Mathematics and
Applications



https://uknowledge.uky.edu/me_textbooks/1/
https://uknowledge.uky.edu/me_textbooks/1/
https://uknowledge.uky.edu/me_textbooks/1/
https://uknowledge.uky.edu/me_textbooks/1/

Colebrook Formula

For 4 X 10° < Re < 108, Darcy’s friction 0.1 -

\ fully turbulent /D
factor may be computed by the Colebrook 0.08 - X 0.05
formula 0.06 - 0.03
0.05 - 0.02
e/D 2.51 U.0% 1 0.01
— = —210g,, X + 0.03 - 0.004
\/]7 . Re\/]_f 0.025 - 0.002
- 0.02 7 0.001
f needs to be solved iteratively. 0.015 - 0.0003
7 0.0001
The calculated values of f differ from 0.01 - Ss.
experimental results < 15%. 0.008 -
0.006 - ~
0.005 - smooth pipe
3 4 5 6 7 8

log1o Re

Moody diagram calculated by the Colebrook formula



Laminar flow: u = U, 'S

. 1/n
Turbulent flow: u = U, (1 — E)

n = 6 when Re ~ 2 x 10*
n = 10 when Re ~ 3 x 10°

At high Re, velocity profile is relatively flat,
but decreases rapidly to O near the wall.

u/ Uc

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -

Velocity Profile

> C > Z
—
L
— laminar
—— n=4
Nn=6
—— n=8
—— n=10
0.0 0.2 0.4 0.6 0.8 1.0

r/R




Practical Head Loss Equation

. . Pl 1 9) P2 1 9) .
Bernoull's equation — +—v; + gz, =—+ -V, + 8%, IS
p 2 p 2
replaced by:

P, U P, U3 \
— t o —— + Tt hpump = — Tt — T+ hf + hturbine

P8 28 P8 28

U,, U, : average flow speeds, &, a, : correction factor for KE.
a = 2 for laminar flows, a ~ 1 for turbulent flows.

hf : head loss caused by viscosity,

hpump . head gain by a pump (if present),
h, ..., . head loss by driving a turbine (if present).



Example 1

QOil, with p = 900 kg/m3, and v = 107> m?/s, flows at O=0.2 m>/s through 500 m of
0.2m-diameter cast iron pipe (roughness ¢ = 0.26 mm). Determine the head loss and
pressure drop if the pipe slopes down at 10°.

O
Flow speeds U, = U, = = 6.37 m/s
P : > 1D2/4
pUD  UD 5
u U

The flow is turbulent. Using Colebrook formula with €/D = 0.26/200 and the above Re, | get f = 0.0227. The
head loss is given by the Darcy-Weisbach equation:

U P, Ui P, U;
he =f = 117m. a = 1 for turbulent flows. | F 2 = | -2, + hy

2Dg pg 28 pg 28
Pl _PZ

P

= h;— (zy — ) = [17m — (500m)sin 10° = 30m.

Pressure drop AP = pg(30m) = 2.65 x 10° Pa.



Example 2

The pipe in the previous example is connected to a horizontal pipe of length 100 m. The pipe is also made of

cast iron but with diameter D = 0.25m. Suppose the flow rate remains the same (Q = 0.2m?/s). Calculate
the head loss and pressure difference in the second pipe.

nD+/4 %4
U.D
Re = —— = 1.02x 10° , e/D = 0.26/250. NS
The Colebrook formula gives f = 0.0223. 100 m
LU?
Head loss: iy = f = 7.54 m.
2Dg

P, U3 Py Us
Horizontal pipe = 2, = 3, | = | | hf , U, = 6.37 m/s from previous calculation.
pg 28 p8 28

= P, — Py = pgh; +,0(U32 — U22)/2 = 5.6 X 10* Pa




