
Nuclear spins

Begin with a nucleus whose angular momentum operator is ℏԦ𝐼 .  The total spin and its z-component are given by 

expectation values,

Ԧ𝐼 ∙ Ԧ𝐼 = 𝐼 𝐼 + 1  𝐼𝑧 = −𝐼, −𝐼 + 1, … . , 𝐼 − 1, 𝐼

The nuclear spin I may be integral or half-integral.  Spin ½ nuclei such as 1H, 13C, 19F, 31P are widely used for chemical 

identification and MRI (magnetic resonance imaging)   but igher spin nuclei are much more common.  Examples include spin 

3/2 (27Al, 63Cu, 65Cu) and spin 5/2 (27Al ).   NMR probes the behavior of the nuclear magnetic dipole moment given by,  

𝑚 = 𝛾𝑛ℏԦ𝐼

𝛾𝑛 is called the gyromagnetic ratio which is determined the nuclear structure.  It can be positive or negative.  If we place a nucleus 

in a magnetic field 𝐵0, which defines our quantization z-axis, then the energy is given by,

𝐸𝑛𝑒𝑟𝑔𝑦 = −𝑚 ∙ 𝐵0 = −𝛾𝑛ℏ𝐼𝑧𝐵0

Since 𝐼𝑧 can only change by integral units, the energy levels are evenly spaced,

𝐸𝑛 = −𝛾𝑛ℏ𝐵0 −𝐼, −𝐼 + 1, … , 𝐼 − 1, 𝐼 =  ℏ𝜔𝐿 ∙ −𝐼, −𝐼 + 1, … , 𝐼 − 1, 𝐼

We define the Larmor frequency as : 

𝜔𝐿 ≡ −𝛾𝑛𝐵0

As we’ll see, 𝜔𝐿 represents the rate at which the spins precess about a magnetic field B0 (considered positive.)  For most nuclei 

𝛾𝑛 > 0 so the Larmor frequency is negative and the precession is clockwise.  But there are nuclei with 𝛾𝑛 < 0. Protons have the 

largest 𝛾𝑛 of any nucleus and, for a given magnetic field, provide the largest NMR signals.  



Larmor frequency





Spin ½ is by far the simplest system to analyze.  There are two states, corresponding to Iz = +1/2 and -1/2.  If 𝛾𝑛 >
0 then the Iz = +1/2  state (spin up) will have the lowest energy in a magnetic field.  The nucleus can emit and absorb photons 

equal to the energy difference between the up and down spin states,   

∆𝐸 = ℏ 𝜔𝐿

The actual frequency, in Hz, at which photons are absorbed 

and emitted is given by

 𝑓𝐿 = ൗ𝜔𝐿 2𝜋 =
𝛾𝑛

2𝜋
 𝐵0 

The table shows 𝛾𝑛 for some common nuclei.  (Not all are spin 

½.) Many laboratory superconducting magnets have a 

maximum B0 of about 9.4 Tesla, limited by the properties of 

the superconducting wire from which they are wound.  This 

field corresponds to fLarmor = 400 MHz for protons and about 

100 MHz for 13C nuclei, two nuclei that are widely used for 

chemical identification.  For enough money you can get much 

larger magnetic fields.  For example, an 800 MHz proton NMR 

spectrometer has a maximum field of B0 = 18.8 T.   Since the 

frequencies encountered in NMR are below 1 GHz , NMR is a 

radio frequency (RF) spectroscopy. 
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Density Matrix

 Suppose we want to find the expectation value 𝑂  of some operator O.  Expand the wavefunction in a complete set of 

eigenstates to obtain, 

ȁ ۧ𝜓 = ෍

𝑚

𝑎𝑚 𝑡 ȁ ۧ𝑚  →  𝑂 = 𝜓 𝑂 𝜓 = ෍

𝑚,𝑛

𝑎𝑛
∗ 𝑎𝑚 𝑛 𝑂 𝑚

Now define the density operator 𝜌 as,

𝜌 = ෍

𝑚,𝑛

𝑎𝑚𝑎𝑛
∗ ȁ ۧ𝑚 ȁۦ𝑛  →  𝑚 𝜌 𝑛  = 𝜌𝑚𝑛 = 𝑎𝑚𝑎𝑛

∗

     

𝜌𝑚𝑛 is the density matrix.  𝜌 is Hermitian since 𝜌𝑛𝑚
∗ = 𝑎𝑛𝑎𝑚

∗ ∗= 𝑎𝑚𝑎𝑛
∗ = 𝜌𝑚𝑛 .  We now have, 

𝑂 = 𝜓 𝑂 𝜓 = ෍

𝑚,𝑛

𝑎𝑛
∗ 𝑎𝑚 𝑛 𝑂 𝑚 = ෍

𝑚,𝑛

𝜌𝑚𝑛 𝑛 𝑂 𝑚 = ෍

𝑚,𝑛

𝑛 𝑂 𝑚 𝑚 𝜌 𝑛 = ෍

𝑛

𝑛 𝑂𝜌 𝑛 = ෍

𝑛

𝑛 𝜌𝑂 𝑛 = 𝑇𝑟𝑎𝑐𝑒 𝜌𝑂

Rather than calculating the amplitudes 𝑎𝑚 it's often better to use the density matrix and take the trace to find 𝑂 .  To do that we 

need an equation of motion for the density matrix.   Using the Schrodinger equation, 

ȁ ۧ𝜓 = ෍

𝑚

𝑎𝑚 𝑡 ȁ ۧ𝑚  𝑖ℏ
𝜕ȁ ۧ𝜓

𝜕𝑡
= 𝐻ȁ ۧ𝜓  →  𝑖ℏ

𝑑𝑎𝑘

𝑑𝑡
= ෍

𝑚

𝑎𝑚 𝑡 𝑘 𝐻 𝑚

Using this and taking complex conjugates of both sides we obtain an equation of motion for the density operator,

𝑑𝜚

𝑑𝑡
=

1

𝑖ℏ
𝐻, 𝜌 =

𝑖

ℏ
𝜌, 𝐻

It looks like the Heisenberg equation of motion but with a minus sign. It’s perfectly general so 𝐻 can depend explicitly on time.  We’ll 

now specialize to 2-level systems.   Recall that any 2 x 2 matrix D can be written as a linear combination of the identity matrix and 

the 3 Pauli matrices,

𝐷 = 𝑑0 + Ԧ𝑑 ∙ Ԧ𝜎 𝜎𝑥 =
0 1
1 0

 𝜎𝑦 =
0 −𝑖
𝑖 0

 𝜎𝑧 =
1 0
0 −1



𝑑0 and Ԧ𝑑  are real numbers.  Let the Hamiltonian and density operator for a 2-level system be written in this way,

𝐻 = ℎ0 + ℎ ∙ Ԧ𝜎 𝜌 = 𝜌0 + 𝑃 ∙ Ԧ𝜎

Putting these into the equation of motion for the density operator we get,  

𝑑𝜚

𝑑𝑡
=

1

𝑖ℏ
𝐻, 𝜌 =

1

𝑖ℏ
ℎ ∙ Ԧ𝜎, 𝑃 ∙ Ԧ𝜎 

To find the commutator we use an identity for Pauli matrices,

 𝐴 ∙ Ԧ𝜎  𝐵 ∙ Ԧ𝜎 =  𝐴 ∙ 𝐵 + 𝑖 Ԧ𝜎 ∙  𝐴 x 𝐵

The equation of motion becomes,

𝑑𝜚

𝑑𝑡
=

𝑑

𝑑𝑡
𝜌0 + 𝑃 ∙ Ԧ𝜎 =

𝑑𝜌0

𝑑𝑡
+

𝑑𝑃

𝑑𝑡
∙ Ԧ𝜎 =

1

𝑖ℏ
𝐻, 𝜌 =

1

𝑖ℏ
ℎ ∙ Ԧ𝜎, 𝑃 ∙ Ԧ𝜎 =

2

ℏ
Ԧ𝜎 ∙  ℎ x 𝑃

Since the Pauli matrix together with the identity matrix form a complete basis set we must have,

𝑑𝜌0

𝑑𝑡
= 0 

𝑑𝑃

𝑑𝑡
=

2

ℏ
 ℎ x 𝑃

The vector ℎ is related to the Hamiltonian operator H by, 

𝐻 =
1 𝐻 1 1 𝐻 0
0 𝐻 1 0 𝐻 0

= ℎ0 + ℎ ∙ Ԧ𝜎 =
ℎ0 + ℎ𝑧 ℎ𝑥 − 𝑖ℎ𝑦

ℎ𝑥 + 𝑖ℎ𝑦 ℎ0 − ℎ𝑧

For NMR, we’ll need, for example,  the expectation value of th magnetic moment, 𝑚𝑥  where 𝑚𝑥 =
ℏ

2
𝛾𝑛 𝜎𝑥 . Using the fact that 

𝑇𝑟 𝜎𝑖 = 0 , 𝑇𝑟 𝜎𝑖𝜎𝑗 = 2𝛿𝑖𝑗  , the expectation value of 𝑚𝑥 is given by, 

𝑚𝑥 = 𝑇𝑟 𝑚𝑥𝜌 =
ℏ𝛾𝑛

2
𝑇𝑟 𝜎𝑥 𝜌0 + 𝑃 ∙ Ԧ𝜎 = 𝛾𝑛ℏ 𝑃𝑥



Going through the same process for 𝑚𝑦  and 𝑚𝑧  leads to 𝑚 = 𝛾𝑛ℏ 𝑃 .   Using the equation of motion for the density operator we 

obtain an equation of motion for 𝑚  in our 2-level system,

𝑑𝑃

𝑑𝑡
=

2

ℏ
 ℎ x 𝑃  →  

𝑑 𝑚

𝑑𝑡
= 2 𝛾𝑛 ℎ x 𝑚

𝑀

𝐵

𝜔 = −𝛾𝑛𝐵

For a spin in a magnetic field 𝐵 the Hamiltonian is given by, 

𝐻 = −𝑚 ∙ 𝐵 = −𝛾𝑛

ℏ

2
 Ԧ𝜎 ∙ 𝐵  → ℎ = −𝛾𝑛

ℏ

2
𝐵

Putting this together we obtain the equation of motion for 𝑚  ,

𝑑 𝑚

𝑑𝑡
= 𝛾𝑛 𝑚  𝑥 𝐵

This equation of motion corresponds to the precession of the vector 𝑚  about a 

magnetic field 𝐵.   For most nuclei 𝛾𝑛 is positive so the angular precession 

frequency 𝜔𝐿 = −𝛾𝑛𝐵 is negative, corresponding to clockwise precession. 𝜔𝐿 is 

known as the Larmor frequency.  Despite the fact that the underlying physics is 

purely quantum mechanical, this result allows us to treat the spin precession 

classically which is a huge simplification.   NMR is a weak probe and we generally 

require many spins to see a signal.   Therefore, we’ll generally deal with the 

macroscopic magnetization vector 𝑀 which is the magnetic moment per unit 

volume,

𝑀 = ൗ෍

𝑖

𝑚𝑖 𝑉𝑜𝑙  →  
𝑑 𝑀

𝑑𝑡
= 𝛾𝑛 𝑀  𝑥 𝐵

From here on we’ll drop the brackets and assume that 𝑀 represents its own expectation value and treat it as a classical quantity 

whose equation of motion is,   

𝑑 𝑀

𝑑𝑡
= 𝛾𝑛 𝑀 𝑥 ෠𝐵



Polarizing nuclei

Think of spin ½ nuclei.  NMR requires an imbalance 𝑛↑ − 𝑛↓  between up and down spins. Otherwise as many spins 

would absorb energy as those that emit energy.   The signal will be proportional to the total magnetizaton,

𝑀0 𝑇 = 𝑛↑ − 𝑛↓ Τ𝛾𝑛 ℏ 𝐵0 2

where 𝑛↑ + 𝑛↓ = 𝑛, the total number of spins per unit volume.  In thermal equilibrium,  Τ𝑛↓ 𝑛↑ = 𝑒𝑥𝑝 − Τℏ 𝛾𝑛 𝐵0 𝑘𝐵𝑇  so,

𝑀0 𝑇 = 𝑁
𝛾𝑛 ℏ

2
𝑡𝑎𝑛ℎ

ℏ 𝛾𝑛  𝐵0

2 𝑘𝐵𝑇

The quantity in parentheses is always very small at room temperature.   For protons at room temperature in the 1.5 T field th at you 

might find in an MRI machine, 

   
𝛾𝑛ℏ 𝐵0

2 𝑘𝐵𝑇
≈ 10−5 

The imbalance between up and down spins is therefore also very small, as you can see in the figure.  To increase 𝑀0 𝑇  we need to 

either increase the field or lower the temperature.  Newer MRI machines work at up to 4 T.  

𝑛↓

B0 = 1.5 T 





𝑛↑ = 1.00001 𝑛↓

In equilibrium 𝑀0 is oriented along the applied field 

𝐵0 .  To obtain an NMR signal we’ll apply an 

additional time-dependent magnetic field at the 

resonant frequency to change the direction of 𝑀0 .  

This process is easily visualized with classical 

mechanics but it holds true quantum mechanically.



CW NMR spectroscopy

The spectroscopy we first learn about involves exciting a sample with light of a particular frequency and looking for 

resonant absorption.  In NMR this is called continuous wave or CW spectroscopy.  The experimental geometry consists of an 

inductor (coil) of some shape containing the sample of nuclear spins and a static magnetic field 𝐵0 .   The coil axis is perpendicular to 

𝐵0. An alternating current at frequency 𝜔 (considered positive) is applied to the coil and the amplitude and phase of the voltage 

across it is monitored as the magnetic field magnitude is varied.  When the condition 𝜔 =  𝛾𝑛𝐵0  is met the coil will develop an 

additional change in both its inductance 𝛿𝐿 and resistance 𝛿𝑅 that exhibit resonant behavior centered on the Larmor frequency.   It’s 

also possible to keep the field fixed and vary the frequency of excitation but that is more difficult to do. 

The earliest NMR was CW but since the mid-1960’s a much more versatile approach has been used.   Short bursts of energy at 

or near the Larmor frequency are applied to the spins and their subsequent response as a function of time is recorded and 

Fourier transformed.  This gives the same spectrum as you would obtain in a CW measurement but it’s much faster and permits 

a much wider range of measurements.  This approach is called Fourier Transform NMR.  The signal is still detected from the 

voltage across a coil but the mode of excitation and detection involves looking at the spins as a function of time.  FT NMR is 

more demanding of the electronics since amplifiers and detectors must respond to changes on very short time scales.

𝐵0

Sample

Coil

spins

𝜔 −  𝛾𝑛𝐵0

𝛿𝑅, 𝛿𝐿



Rotating Frame
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x
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Change of reference frame is essential for understanding NMR.  Imagine we step into a 

frame of reference that rotates about the z-axis (defined by 𝐵0) at an angular frequency 

𝜔𝑅𝑜𝑡. This rotating frame is defined by unit vectors ො𝑥𝑅, ො𝑦𝑅 , Ƹ𝑧𝑅 = Ƹ𝑧 .   Using a little vector 

analysis, we find that in the rotating frame 𝑀 obeys,

𝑑 𝑀𝑅

𝑑𝑡
= 𝛾𝑛𝑀𝑅 𝑥 𝐵0 + Ƹ𝑧

𝜔𝑅𝑜𝑡

𝛾𝑛

If, for example, we chose 𝜔𝑅𝑜𝑡= −𝛾𝑛𝐵0 = 𝜔𝐿 then 𝑀𝑅 is stationary,

𝑑 𝑀𝑅

𝑑𝑡
= 0 𝜔𝑅 = 𝜔𝐿

If, on the other hand, we chose 𝜔𝑅𝑜𝑡 ≠ 𝜔𝐿  then in the rotating frame 

𝑀𝑅 precesses at an offset frequency Ω = 𝜔𝑅𝑜𝑡 − 𝜔𝐿 which can be positive 

or negative.  In FT NMR, Ω is generally much less than 𝜔𝐿 .   This is 

common is nearly all RF electronics.  It means that the signal we detect 

(explained later)  is at a much lower frequency so high precision electronics 

can be used. 

Spins in equilibrium just have a static magnetization 𝑀0 Ƹ𝑧 . To detect a 

signal we need to generate a changing flux through a coil.  If we can tip 𝑀𝑅 

away from the z-axis then it will precess at 𝜔𝐿 or, equivalently, at Ω in the 

rotating frame, producing an oscillating flux along the x-axis and a voltage 

we can detect.   In the rotating frame it’s easy to see how to tip 𝑀 away 

from equilibrium.  Set 𝜔𝑅𝑜𝑡= 𝜔𝐿  and turn on a magnetic field  𝐵1  that’s 

constant in the rotating frame, say along the ො𝑥𝑅 axis.  Now, the only field 

𝑀𝑅 sees is 𝐵1 so it precesses around it, at frequency, 𝜔1 = −𝛾𝑛𝐵1  . xR

yR

z

B1

𝜔1

𝑀𝑅

z = zR

𝛾𝑛 > 0



RF pulses

xR

yR

z

𝑀𝑅

B1



If we apply 𝐵1 along the x-axis in the rotating frame for a time 𝜏 then 𝑀𝑅 will precess around 

it by an angle,

𝜃 = 𝜔1𝜏 = −𝛾𝑛𝐵1𝜏

( For 𝛾𝑛 > 0 that is a clockwise rotation about xrot .)  That leaves a projection of length 

𝑀0 sin 𝜃  in the xR , yR  plane.  In the lab frame, that corresponds to an x-y component of     

𝑀 precessing about the z-axis at the Larmor frequency 𝜔𝐿 = −𝛾𝑛𝐵0.  The signal induced in 

the coil is proportional to the time rate of change of flux induced by this precessing 

magnetization moment.  Taking the x-axis along the coil, the induced voltage is,

𝑉𝑐𝑜𝑖𝑙 𝑡 =
𝑑𝜙𝐵

𝑑𝑡
 ∝

𝑑𝑀𝑥

𝑑𝑡
 ∝ 𝑀0 sin 𝜃 cos 𝜔𝐿𝑡 + 𝜙

This signal is called the free induction decay (FID), although we haven’t introduced any 

decay as yet.  

𝑉𝑐𝑜𝑖𝑙 𝑡 =
𝑑𝜙𝐵

𝑑𝑡𝐼𝑐𝑜𝑖𝑙 𝑡 ~ cos 𝜔𝐿𝑡

𝐵0

Sample

Coil

Apply 𝐵1 𝑡

Rotate 𝑀

𝐵0

Sample

Coil

Turn off 𝐵1 𝑡
Spins precess

𝐵1 𝑡

𝑀 𝑡



To clarify one thing, recall that we tipped 𝑀 with a field that was constant in the frame rotating at 𝜔𝐿.  That can be produced by 

sending an oscillating current through the coil.   The field in the coil is linearly polarized along the coil axis, but that can be written 

as the sum of two counter-rotating fields,

𝐵1𝑐𝑜𝑖𝑙 𝑡 = 𝐵+ + 𝐵− = 2 𝐵1cos 𝜔𝐿 𝑡 ො𝑥 = 𝐵1 cos 𝜔𝐿𝑡 ො𝑥 + sin 𝜔𝐿𝑡 ො𝑦 + 𝐵1 cos 𝜔𝐿𝑡 ො𝑥 − sin 𝜔𝐿𝑡 ො𝑦

𝐵+ has magnitude B1  and is static in a reference frame rotating at 𝜔𝐿 .  That’s the field that tips tip 𝑀 by 𝜃 . Although 𝐵− is also 

present, it rotates in the opposite direction and is ineffective in tipping 𝑀.  In effect, the spins choose the field component that 

precesses along with them and ignore the other component.  

The figure shows what happens in the rotating frame if we turn on 𝐵1𝑐𝑜𝑖𝑙 𝑡  for time 𝜏 and tip 𝑀 by 𝜃.   In this case 𝜃 = 90° .  
After the RF pulse, the precessing spins generate a waveform called a free induction decay (FID) that oscillates at the Larmor 

frequency (as seen in the frame of the coil.)  The value of the FID right after the RF pulse is proportional to 𝑀0 sin 𝜃. You’ll get 

the largest FID if 𝜃 = 90° and that’s called, appropriately, a 90° pulse.  Important: it’s only the component of 𝑴  that is 

perpendicular to the quantization axis that can generate a signal.  The Mz component cannot produce a signal. 

Free induction decay

xR

yR

zR

M0

B1

FID

Coil voltage

𝜃°
pulse

If the magnetic field were perfectly uniform 

and the spins were entirely isolated from 

their environment, they would precess 

forever.   ( They would eventually radiate 

energy away, but that’s a very weak 

process for a nuclear spin.)  But the spins 

are not isolated and they do not see in a 

perfectly uniform magnetic field so the 

signal decays away in finite time.  That’s 

the D part of FID.  

𝜃



Nutation Curve

  We don’t know, initially, how long to turn on the RF field to tip the spins by 𝜃.  That depends on the precise waveform 

that reaches the coil, the coil resistance and inductance and other details that are hard to know precisely.   Instead, we simply record 

FIDs as a function of RF pulse length.  Their initial value should be a sinusoidal function of 𝜃.   The resulting plot of FID size versus 

pulse length is called a nutation curve. The plot below shows one for 13C NMR in an organic solid. Here, the pulse length was 

increased all the way out to 𝜃 = 𝛾𝑛𝐵1𝜏 = 540° . 

90 540

The nutation curve is usually the first thing to measure once you’ve found the NMR signal.  It’s important to know how long t o 

make the pulse for a 90° and 180° rotation.  It’s also a useful diagnostic tool to see if the RF field of the coil is too 

inhomogeneous, among other things. 



Induced signal

The NMR signal comes from the changing flux induced in a coil by the precessing spins.  In general, the magnetic field produced by 

the coil is not uniform nor is the magnetization so we need to take account of that.  Suppose the field of the coil is given by,

𝐵1 Ԧ𝑟 =  𝐼𝑐𝑜𝑖𝑙 𝑏 Ԧ𝑟

where 𝑏 Ԧ𝑟  describes the spatial profile of the coil.  Now consider a magnetic moment 𝑚  located at Ԧ𝑟 .  Represent 𝑚 by a current 

loop of area A carrying a current 𝐼𝑚 = 𝑚/𝐴  with a direction ො𝑛 parallel to 𝑚 .   We now have a transformer in which the current 𝐼𝑚 𝑡  

induces a time-changing flux ∆𝜙𝑐𝑜𝑖𝑙 ,

  ∆𝜙𝑐𝑜𝑖𝑙 = 𝑀12𝐼𝑚

Where M12 is the mutual inductance.  Now imagine driving a current 

through the coil and inducing a flux in the current loop,

𝜙𝑚 = 𝑀21 𝐼𝐶𝑜𝑖𝑙 

This flux is much easier to calculate.  It’s given by,

𝜙𝑚 = 𝐵1 Ԧ𝑟 ∙ ො𝑛 𝐴 = 𝐼𝑐𝑜𝑖𝑙 𝑏 Ԧ𝑟 ∙ ො𝑛 𝐴 = 𝑀21 𝐼𝐶𝑜𝑖𝑙 

But by reciprocity, M21 = M21 so, 

∆𝜙𝑐𝑜𝑖𝑙 = 𝑀12𝐼𝑚 = 𝑀21𝐼𝑚 = Ԧ𝑓 Ԧ𝑟 ∙ ො𝑛 𝐴 𝐼𝑚 =
𝐵1 Ԧ𝑟

𝐼𝑐𝑜𝑖𝑙
∙ 𝑚 Ԧ𝑟, 𝑡

The total flux induced in the coil is the sum of the contributions from all the moments.  The magnetic moment from each littl e group 

of spins is ∆𝑚  = 𝑀 Ԧ𝑟, 𝑡  𝑑𝑥𝑑𝑦𝑑𝑧. The voltage induced in the coil is the sum of all their flux contributions,  

𝑉𝑐𝑜𝑖𝑙 𝑡 =
𝑑

𝑑𝑡
න ∆𝜙𝑐𝑜𝑖𝑙 Ԧ𝑟, 𝑡  𝑑𝑥𝑑𝑦𝑑𝑧 =

𝑑

𝑑𝑡
න

𝐵1 Ԧ𝑟

𝐼𝑐𝑜𝑖𝑙
 ∙ 𝑀 𝑅, 𝑡 𝑑𝑥𝑑𝑦𝑑𝑧

The integral is over the entire volume of the sample.  Often the sample is small enough to fit into a region of the coil where 𝐵1 Ԧ𝑟  is 

uniform, in which case everything can be pulled outside the integral. 

Coil

𝐼𝐶𝑜𝑖𝑙  

𝑚 =  𝐼𝑚𝐴 ො𝑛

𝐵1 Ԧ𝑟

Current loop 

with area A, 

current Im(t) 
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Inhomogeneous broadening
Suppose now the static field varies by ∆𝐵 across the entire sample.   Spins in different locations will precess at different 

rates.   In a frame rotating at 𝜔𝐿 = −𝛾𝑛𝐵0, spins that see B = B0 just sit still.   Those with B > B0 will precess faster and those with B 

< B0 will precess more slowly.   As different spins get out of phase, 𝑀 decreases and eventually vanishes and with it, the signal 

induced in the coil.   The precise time dependence of the FID depends on the magnetic field profile across the sample.  In many 

cases it’s approximately exponential with a time constant,

𝑇2
∗ ≈

2

𝛾𝑛∆𝐵

How does this dephasing by the inhomogeneous field affect the measured NMR spectrum?  

The key feature of FT NMR is that the Fourier transform of the FID is the NMR spectrum.   

So if the FID decays exponentially with time constant 𝑇2
∗ then the spectrum will be a Lorentzian, centered at 𝜔𝐿 with a half power 

width,

∆𝜔 =
2

𝑇2
∗ = 𝛾𝑛∆𝐵

This is known as inhomogeneous broadening.  While it does limit spectrum resolution, it’s the key to magnetic resonance imaging. 

ω
ωL

∆𝜔FID

Coil voltage

90°
pulse
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Homogenous broadening

In general, both homogeneous and inhomogeneous 

broadening are present so the FID decays with an 

effective time constant,

1

𝑇𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒
≈

1

𝑇2
+

1

𝑇2
∗

∆𝜔 =
2

𝑇𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

In liquids, a phenomenon known as motional 

narrowing leads to extremely long T2 ‘s so often 

𝑇2
∗ ≪ 𝑇2 for many magnets. Inhomogeneous 

broadening dominates the FID.   

In solids, T2 is usually short so one often has 𝑇2
∗ ≫

𝑇2 .  The FID is dominated by T2 and the spectrum 

can be very broad.  It should be remembered that 

the FID does not always decay exponentially.  That’s 

usually the case in liquids but in solids it is often 

Gaussian,

𝑒− Τ𝑡2 𝛼

FID

Coil voltage

RF

pulse

𝐹𝐼𝐷 ~𝑒− Τ𝑡 𝑇𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

Inhomogeneous broadening is a limitation on high resolution spectroscopy but there are ways to get around it.  But 

even in a perfectly homogeneous magnet the FID will still decay.  That comes from, among other things, the fluctuating magnet ic 

fields of nearby spins.  In the figure, spin 1 is in the dipole field B12 of spin 2.   B12 is typically a few Gauss in solids or liquids.  As 

spin 1 moves around it samples B12 at different locations so it sees a random magnetic field, which causes it to make quantum 

transitions.  The net effect is to change 𝑀  as time goes by.  This is know as spin relaxation.  Or, in terms of the spectrum, it leads 

to homogenous broadening. 



What happens after the FID as decayed away?   Somehow the 𝑀 must return to its thermal equilibrium value 𝑀0 Ԧ𝑧 .  

That process is called spin-lattice relaxation and is characterized by a new time constant called T1.   To watch the process, go into 

the rotating frame.  In order to focus on just the T1 process, send in a 180° RF pulse.  This sends 𝑀 from 𝑀0 Ԧ𝑧  to −𝑀0 Ԧ𝑧 .  There is 

no induced signal afterwards because 𝑀 is entirely along the z-axis.  Now wait a time t.   𝑀𝑧 relaxes back up along the z-axis toward 

its equilibrium value 𝑀0.   To measure 𝑀𝑧 at any time, we need to generate a transverse component.  This is done by applying a 90°  
pulse.  The size of the FID is proportional to 𝑀𝑧 𝑡  .  Often the relaxation back to equilibrium is exponential in which case,

Spin-lattice relaxation

180 90
( ) ( )1

0 1 2
t T

zM t M e
−

= −

Measure 𝑀𝑧 𝑡  with an 

FID
Apply 90 

B1

𝑀𝑧 relaxes for time t.Apply 180

B1

t

−𝑀0 Ԧ𝑧

𝑀0 Ԧ𝑧

𝑀𝑧 𝑡 Ԧ𝑧 𝑀𝑧 𝑡

( ) ( )1

0 1 2
t T

zM t M e
−

= −

By doing this for many values of t you can determine T1.  In solid state NMR T1 is often the easiest and most 

important parameter to be measured.  For all NMR measurements, T1 limits how fast you can take data.  To obtain a good signal 

to noise ratio you might want to repeat this sequence 100 times and average the results.  But you must wait at least 5 T1 between 

measurements to make sure the spins are back to equilibrium.   For water at room temperature, 𝑇1 ≈ 2.3 𝑠𝑒𝑐 .  You can see why a 

short T1 can be a real advantage. 



Bloch Equations

Early in the history of NMR, F. Bloch presented equations for the components of the magnetization that include both 

spin precession and relaxation effects.  In the lab (non-rotating) frame, the equations can be written in vector form as,

𝑑 𝑀

𝑑𝑡
= 𝛾𝑛 𝑀 𝑥 𝐵 −

𝑀𝑥

𝑇2
ො𝑥 −

𝑀𝑦

𝑇2
ො𝑦 −

𝑀𝑧 − 𝑀0

𝑇1
 Ƹ𝑧

The spin precession term is familiar. The other terms account for relaxation.  

Longitudinal relaxation: Return to the inversion-recovery sequence.   Before and after the inversion Mx , My = 0.  Immediately after 

the inversion (call it t = 0)  we have Mz = - M0  and the subsequent value obeys, 

𝑑 𝑀𝑧

𝑑𝑡
= −

𝑀𝑧 − 𝑀0

𝑇1
 →  𝑀𝑧 𝑡 = 𝑀0 1 − 2𝑒− Τ𝑡 𝑇1

Transverse relaxation :   Now imagine performing a 90° pulse in a perfectly uniform magnetic field.  After the pulse Mz = 0 and  

𝑀𝑥, 𝑀𝑦 ≠ 0   The Bloch equations give,

𝑑 𝑀𝑥

𝑑𝑡
= −

𝑀𝑥

𝑇2
 

𝑑 𝑀𝑦

𝑑𝑡
= −

𝑀𝑦

𝑇2

The FID will decay exponentially with time constant T2.  These terms account for homogeneous broadening.  In liquids this picture 

works well.  In solids, things are more complicated and the relaxation will not always be exponential.  

There is just one value of B in these equations.  To account for an inhomogeneous magnetic field you would add up contributions to 

𝑀 from regions of space having different magnetic field values.  Depending on the spatial dependence of the B field the FID might 

decay exponentially but it often has more complicated functional form.  



Spin Echo   (E. Hahn, 1950)

 Hahn’s discovery of the spin echo really began the huge field of sophisticated NMR spectroscopy.  To understand it, 

look in the frame rotating at the Larmor frequency and apply a 90° pulse.  This leaves 𝑀  lying in the plane, let’s say along the yR 

axis.  Field inhomogeneity causes the spins to dephase.  Wait some time t and apply a 180° pulse along the yR axis.  (It could also 

be along the xR axis.)  In fact you can wait until the FID has completely vanished before applying the 180.  The 180 pulse rotates the 

spins around the yR axis, after which they continue to precess in the same direction as before.  But now, instead of dephasing, they 

are rephasing and all come together at precisely time 2t, producing a spin echo.  The second half of the echo is equivalent to the 

original FID.  The echo has refocused the inhomogeneous broadening and brought the FID back to life!  Almost…    

B1

ωL+ γnδB

M(2t)

Echo

M0 

xR

yR

Directly after 

90° pulse

FID

Apply 180° pulse 

at time t

Spins refocus Echo peak at 2t

ωL - γnδB

90 180  

t t

Echo

18090

FID



Spin Echo to measure T2

90 180  

t t

Echo
18090

FID

The echo has refocused the dephasing due to field inhomogeneity.  It’s as if each spin had a memory of how much 

it has precessed and the 180 reverses that process.   However, dephasing due to the environment (homogeneous broadening) 

is random and cannot be refocused.   This random dephasing continuously reduces the magnetic moment so that, 

𝐸𝑐ℎ𝑜 𝑝𝑒𝑎𝑘 =  𝑀 2𝑡 = 𝑀0𝑒− Τ2𝑡 𝑇2

But this is a good thing.  It means that even with a highly inhomogeneous magnet, in which 𝑇2
∗ ≪ 𝑇2 , we can still measure the 

intrinsic dephasing time 𝑇2.  In addition, the second half of the echo is proportional to the true FID.  The original FID has the 

problem that the electronics does not turn off abruptly at the end of the 90° pulse.  Amplifiers and tuned circuits tend to “ring” for 

some finite time after a pulse and interfere with the true FID signal.   Therefore it’s impossible to begin recording the FID  at t = 

0.  The echo, on the other hand, is far away from this interference so the peak of the echo represents the true initial value  of the 

FID, aside from the reduction from T2.  

𝑀 2𝑡 = 𝑀0𝑒− Τ2𝑡 𝑇2



Spin echo to measure diffusion   

Along with the intrinsic T2 dephasing that spins undergo, they can also move around.   As they move into regions 

where the field is different, their precession rates change.   This also leads to an irreversible decay of the magnetization and 

therefore the echo.  Suppose, for example, the magnetic field is axially symmetric but has a gradient dB/dz  along the field direction, 

z.  The figure shows such a gradient in an MIR magnet.  It was first shown by Hahn that the spin echo at time 2 t is reduced by an 

additional factor (in green),

𝐸𝑐ℎ𝑜 2𝑡 = 𝑀0 𝑒− Τ2𝑡 𝑇2  𝑒𝑥𝑝 − 𝛾𝑛

𝑑𝐵

𝑑𝑧

2
2

3
𝐷𝑡3

where D is the diffusion constant of the spin.  Notice that the diffusion piece depends on  t3 , not (2t)3.  In other words, the diffusion 

begins anew after each pulse so it depends on the time between pulses, t, not the total elapsed time since the 90 degree pulse.  

Modern methods involve more sophisticated pulse sequences with pulsed gradients that can isolate the diffusion contribution. 

https://www.imaios.com/de/e-mri/spatial-

encoding-in-mri/magnetic-field-gradients

Z gradient

B0                       

Some diffusion constants

Water at room temp, D = 2.3 x 10-9 m2/sec

Glycerol at room temp, D = 4 x 10-12 m2/sec

So long as the irreversible effects from T2 and diffusion 

have not completely destroyed the magnetization, the 

dephasing from field inhomogeneity can be refocused 

repeatedly.  The next page shows what is called a 

Carr-Purcell-Meiboom-Gill (CPMG) sequence. 



https://www.researchgate.net/publication/339045537_Time 

Domain_Nuclear_Magnetic_Resonance_Determination_of_Wett

ability_Alteration_Analysis_for_Low-Salinity_Water/figures?lo=1
Echo

amplitude

18090 180 180 180 180

CPMG sequence

Each 180° pulse refocuses what’s left of the magnetization after the previous echo.   The first echo after the 90° pulse reduces 

the initial magnetization by, 

𝐸𝑐ℎ𝑜 2𝜏 = 𝑀0 𝑒− Τ2𝜏 𝑇2  𝑒𝑥𝑝 − 𝛾𝑛

𝑑𝐵

𝑑𝑧

2
2

3
𝐷𝜏3 = 𝑀0 𝛼

At time 𝑡 = 2𝜏 (the peak of the first echo) it’s just like the situation at t = 0 except that the magnetization has been reduced by 𝛼.  

The Nth echo will therefore have height, 

𝐸𝑐ℎ𝑜 𝑡 = 2𝑁𝜏 = 𝑀0 𝛼𝑁  =  𝑀0 𝑒− Τ2𝑁𝜏 𝑇2  𝑒𝑥𝑝 −𝑁 𝛾𝑛

𝑑𝐵

𝑑𝑧

2
2

3
𝐷𝜏3

= 𝑀0  𝑒− Τ2𝑁𝜏 𝑇2  𝑒𝑥𝑝 − 𝛾𝑛

𝑑𝐵

𝑑𝑧

2
2𝑁𝜏

3
𝐷𝜏2

By shortening 𝜏 and increasing N we can keep 2𝑁𝜏 constant.  However, the diffusion term has an additional 𝜏2 in the exponent 

so the diffusion part becomes less important relative to the T2  part.   The echo decay is then dominated by T2.  

This figure illustrates the difference between inhomogeneous and homogeneous broadening.  Inhomogeneous broadening 

causes the initial FID and each individual echo to rapidly decay away from its maximum value.  But if 𝑇2 ≫ 𝑇2
∗  the echo peak 

heights decay more slowly, due to homogeneous broadening. 

M0

The figure shows a 90° pulse followed by an 

equally-spaced train of 180° pulses and the 

ensuing spin echoes.



Mechanisms of spin-lattice relaxation

 After an RF pulse 𝑀 is no longer in thermal equilibrium.  In order to return to equilibrium there must be some way to 

flip spins.   Think of inversion-recovery.  We used a magnetic field in the xR or yR direction of the rotating frame to rotate 𝑀.  That 

means a field at the Larmor frequency in the lab frame.   These fields can come from nearby nuclear or electron spins.   They 

fluctuate so they don’t have a constant frequency.  Instead, they have Fourier components ranging from 𝜔 = 0  up to very high 

frequencies but only the components near the Larmor frequency are effective in flipping spins.  

𝐵𝑥 𝑡

Bx
By

The figure shows random fields Bx and By with Fourier components at the 

Larmor frequency.  In the rotating frame these components are stationary.  

Either one can rotate the spin from down to up, thus restoring equilibrium.  

Since they are random, they average to zero,

𝐵𝑥,𝑦 𝑡 =
1

2𝑇
න

−𝑇

𝑇

𝐵𝑥,𝑦 𝑡  𝑑𝑡 𝑇 → ∞

However, the mean-squared values 𝐵𝑥
2 , 𝐵𝑦

2 ≠ 0.  Since they are 

random functions we can’t just expand them in a Fourier series.  Instead, 

look at the autocorrelation function,

𝐵𝑥 𝑡 𝐵𝑥 𝑡 + 𝜏

(and similarly for By.)  If 𝜏 = 0 then this function is just 𝐵𝑥
2 .  And for 𝜏 →

∞ it will be zero since there can’t be any correlation between the field at 

widely separated times.  Since the field is random it shouldn’t make any 

difference if we evaluate the autocorrelation function at 𝜏 or −𝜏.  A widely 

used approximation that satisfies all these criteria is, 

𝐵𝑥 𝑡 𝐵𝑥 𝑡 + 𝜏 = 𝐵𝑥
2 𝑒− 𝜏 /𝜏𝑐

where 𝜏𝐶 is the correlation time.  Correlation functions are the key players 

when we discuss random processes.

-M

M

-M

M



Since we are interested in the Fourier components of the fluctuating fields, we take the Fourier transform of the auto correl ation 

function.

𝐽 𝜔 =
1

𝐵𝑥
2 න

−∞

∞

𝐵𝑥 𝑡 𝐵𝑥 𝑡 + 𝜏  𝑒−𝑖𝜔𝑡 𝑑𝑡

This function is called the spectral density or the power spectrum.  It’s the connection to Fourier analysis for random functions.  

Since we’re looking for Fourier components that are stationary in the rotating frame we need to evaluate the spectral  density at 

the Larmor frequency.  For two random fields acting on the spin the result is,

1

𝑇1
= 𝛾𝑛

2 𝐵𝑥
2 + 𝐵𝑦

2  𝐽 𝜔𝐿

Using the previous expression for the auto-correlation function we have, 

1

𝑇1
= 𝛾𝑛

2 𝐵𝑥
2 + 𝐵𝑦

2  𝐽 𝜔𝐿 = 𝛾𝑛
2 𝐵𝑥

2 + 𝐵𝑦
2

𝜏𝐶

1 + 𝜔𝐿
2𝜏𝐶

2

The figure shows two random 

functions in which x(t) has a smaller 

correlation time than y(t).  

https://en.lntwww.de/Theory_of_Stochastic

_Signals/Auto-Correlation_Function



The spectral density is shown in the figure.  If we fix the Larmor 

frequency and vary the correlation time,  then the spectral density 

function goes from slow motion (long 𝜏𝐶) to intermediate, to fast motion 

(short 𝜏𝐶).  1/T1 will go through a maximum when 𝜔𝐿 = Τ1 𝜏𝐶 .   The 

correlation time generally varies with temperature.  

For protons in ordinary water 𝜏𝐶 ≈ 10−11 𝑠𝑒𝑐 so that would be 

considered fast motion for Larmor frequencies 𝑓𝐿 = Τ𝜔𝐿 2𝜋 all the way 

up to about 1010 Hz.   On the other hand, spins in solids may have 

much longer correlation times, in the 10-7 sec range.  

https://casegroup.rutgers.edu/ln

otes/NMR_lecture_dynamics.pdf

Spin relaxation by dipoles in liquids

  The previous example assumed general, random fields, Bx and By which lead to relaxation.  In real systems like H2O 

these come from the dipole fields of the protons.  The dipole-dipole interaction is given by,

𝐻12 = − Ԧ𝜇1 ∙ 𝐵12 =
𝜇0

4𝜋 𝑟12
3 Ԧ𝜇1 ∙ Ԧ𝜇2 − 3 Ԧ𝜇1 ∙ Ƹ𝑟12 Ԧ𝜇2 ∙ Ƹ𝑟12  Ԧ𝜇𝑖 = 𝛾𝑛𝑖

Ԧ𝐼𝑖

 

Here 𝐵12 is the field produced by dipole moment of spin 1 at the location of spin 2.  The Τ 1 𝑟12
3  

factor means that nearby spins are the most important.  Liquids are very complicated so there 

are many contributions to 1/T1, all coming from the dipole interaction:

(1) Interaction between spins on the same molecule.  Here, we assume 𝑟12  is fixed so just the 

angle 𝜃12 fluctuates.  That’s equivalent to Ƹ𝑟12 diffusing around on the unit sphere. The 

correlation time and therefore 𝐽 𝜔𝐿  depends on the viscosity 𝜂 of the liquid,

𝜏𝐶 =
4𝜋𝜂

3𝑘𝐵𝑇
 ~ 10−10 − 10−12 𝑠𝑒𝑐

In a field of B =1 Tesla, the proton Larmor frequency is 𝜔𝐿 = 1.4 𝑥 108 so usually  𝜔𝐿𝜏𝐶 ≪ 1 

in liquids.

Ԧ𝑟12Ԧ𝜇1

Ԧ𝜇2

Ԧ𝜇1

Ԧ𝜇2

𝜃12



To get a feel for the dipole interactions, consider two protons in a water molecule and suppose the molecule rotates 

counterclockwise about the proton at the center.  If, during this time, the center proton doesn’t make a transition, then its  dipole 

field stays fixed.  As the molecule rotates, the green proton moves from point 1 to 2  to 3.  It feels successive magnetic fields 

shown by the blue arrows.  (See M. Levitt, Spin Dynamics, pp. 532-533.)

1

2

3

There’s another effect.  Suppose the static field B0  is 

perpendicular to the page.  Then the center spin 

precesses in the plane of the page at 𝜔𝐿.  As seen in 

the frame rotating at the Larmor frequency, that, 

together with the molecular rotation at 𝜔𝐿 can rotate the 

the spin of the green proton and therefore contribute to 

1/T1.    A full quantum treatment takes all these effects 

into account.  All told, for a rotating molecule, T1 is 

determined by the spectral density at both 𝜔𝐿 and 2𝜔𝐿 ,

 

1

𝑇1
=

3

2
𝛾𝑛

4 ℏ2𝐼 𝐼 + 1 𝐽 𝜔𝐿 + 4 𝐽 2𝜔𝐿

where I  is the spin.  Since 𝜔𝐿𝜏𝐶 ≪ 1 for typical fields, 

both spectral densities can be approximated by,

 𝐽 𝜔𝐿 , 𝐽 2𝜔𝐿 ∝ 𝜏𝐶

(2) We also need to consider spins on other molecules.

In that case, it’s the translational (rather than rotational) 

diffusion of these other spins through the dipole field 

that matters the most.  It turns out that both 

contributions have the same functional form,

1

𝑇1
∝ 𝜏𝐶 ∝  

𝜂

𝑇

This proportionality has been verified over several decades for many liquids. 



Relaxation by paramagnetic ions

 Imagine we now dissolve something like CuSO4 in water.  There will now be a concentration of Cu(2+) and SO4(2-) 

ions.  The ions have unpaired electronic spins so they are paramagnetic and can interact with protons on nearby water molecules.  

Metallic ions dissolved in water usually form complexes in which 6 water molecules are loosely bound to the metallic ion.  The ion 

Cu(2+) pulls the oxygen end of each H2O toward it, as shown.  (There is some evidence that 5-water complexes also form.)  We 

measure T1 of the protons, shown as white spheres.  

1

𝑇1
∝ 𝜏𝐶 ∝  

𝜂

𝑇
𝑁𝑖𝑜𝑛

Proton T1 in water at 29 MHz.  From 

Bloembergen, Purcell and Pound, 

Physical Review 73, 679 (1948).

The proton T1 is now determined by its motion through the dipole field of 

the ion.  That’s because, for unlike spins, 1/T1 ∝ 𝛾𝑛
2𝛾𝑒

2 and the electron gyromagnetic 

ratio 𝛾𝑒 is 660 times larger than the proton 𝛾𝑛.  We still need to calculate the spectral 

density of the fluctuating magnetic field seen by the proton.  First, we can treat this entire 

complex as a sphere doing a rotational random walk around the ion at the origin, so the 

math is pretty much like the case for two protons on the same molecule.     The original 

paper on this subject was written in 1948 by Bloembergen et. al., referred to as BPP.   

The plot shows their T1 values for water containing 3 different metallic ions at varying 

concentrations.  The result is,

The next refinement is to account for the continual exchange between water molecules 

in the coordination sphere and those surrounding it.   This subject is highly relevant to 

modern MRI because changes in T1 can serve as a contrast agent.   For an up-to-date 

reference on the subject see D.A. Faux et. al., Nuclear spin relaxation in aqueous 

paramagnetic ion solutions, Physical Review E, 107, 054605 (2023).



 For now, put aside the complications of dipole fields and think back to our discussion of  inhomogeneous 

broadening.  After an RF pulse, spins in the x-y plane dephase in an inhomogeneous B0 field.  That’s a static 𝜔 = 0  field in the 

z-direction.  Now, imagine we have a random fields with components in the z-direction. As before, relaxation will involve the 

spectral density but now, it should be evaluated at 𝜔 = 0.  So one contribution to 1/T2 is given by, 

1

𝑇2
= 𝛾𝑛

2 𝐵𝑧
2  𝐽 𝜔 = 0 =  𝛾𝑛

2 𝐵2  𝜏𝐶 𝜔 = 0 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑛𝑙𝑦

Next, think of a spin along the xR direction in the rotating frame.  It can be rotated out of the plane by a random field in the yR  

direction.  The same holds for a spin along yR and a field along xR.  So the same processes that contributed to 1/T1 also 

contribute to 1/T2   except for a factor of ½ due to averaging. The net result is,

1

𝑇2
= 𝛾𝑛

2 𝐵𝑧
2  𝐽 𝜔 = 0 +

1

2
𝐵𝑥

2 + 𝐵𝑦
2 𝐽 𝜔𝐿 =  𝛾𝑛

2 𝐵2 𝐽 𝜔 = 0 +
1

2𝑇1

Therefore,  T1 > T2 /2.   And in fact, if  𝐵𝑥
2 = 𝐵𝑦

2 = 𝐵𝑧
2 ≡ 𝐵2  and 𝜔𝐿𝜏𝐶 ≪ 1  then T1 = T2.   This situation of very rapid 

motion, is usually encountered in liquid state NMR.   The correlation time is very short compared to the period of a Larmor 

precession so,    

1

𝑇2
≈

1

𝑇1
= 2 𝛾𝑛

2 𝐵2  𝜏𝐶 𝜔𝐿𝜏𝐶 ≪ 1

Since the intrinsic linewidth of the NMR resonance is ∆𝜔~ Τ1 𝑇2 , a shorter correlation time 𝜏𝐶 leads to a longer T2 and a narrower 

linewidth.   This limit is referred to as extreme motional narrowing.  It’s what makes liquid state NMR lines much sharper than 

solid state lines.  Again, the peculiarities of the dipole field complicate things a bit but the general notion of motional narrowing 

holds true.  The NMR lines in liquids are fantastically sharp, on the order of Hz with Larmor frequencies of order 400 MHz.  For 

more complete discussions, see M. Levitt, Spin Dynamics and C. P. Slichter, Principles of Magnetic Resonance.

T2 and motional narrowing



NMR Instrumentation



Quadrature detection

 NMR relies heavily on picturing things in a frame rotating at the Larmor frequency.   But the precessing spins simply 

produce an oscillating voltage across the coil.  How can we transform this scalar signal into a vector picture of motion in the rotating 

frame?  In order to reduce confusion about (-) signs I’ll discuss things using spins with negative 𝛾𝑛.  That implies a positive Larmor 

frequency,  𝜔𝐿 = −𝛾𝑛𝐵0 > 0 implying counterclockwise precession of spins around the magnetic field. 

 The figure below shows a cutaway of the the NMR coil and spins precessing after a 90° pulse.  The signal reaching the 

amplifier is proportional to the time rate of change of flux through the coil, 

𝑉𝑐𝑜𝑖𝑙 𝑡 =
𝑑𝜙𝐵

𝑑𝑡
 ∝

𝑑𝑀𝑥

𝑑𝑡

This, in turn, induces a voltage across the tuned circuit which then passes through cables and the amplifier chain produce a voltage,

𝑉 𝑡 ∝ 𝜔𝐿 𝑀0 cos 𝜔𝐿𝑡 + 𝜙 = 2 𝐺 𝑀0 cos 𝜔𝐿𝑡 + 𝜙 = 

where G and 𝜙 depend on the electronics.  (The factor of 2 is just for convenience.)  We now will turn it into a snapshot of 𝑀 𝑡  in the 

rotating frame.  The process is called quadrature detection.  

𝐵0 Ƹ𝑧

Amplifier

x

y

𝑀 𝑡  

𝜔𝐿

NMR Coil

𝑉 𝑡 = 2𝐺 𝑀0 cos 𝜔𝐿𝑡 + 𝜙



Mixer

digitize

digitize

𝑉 𝑡 = 2𝐺 𝑀0 cos 𝜔𝐿𝑡 + 𝜙

𝑉 𝑡  is first split and separately multiplied by cos 𝜔𝑅𝑡 and by cos 𝜔𝑅𝑡 +
𝜋

2
 where 𝜔𝑅  is called the reference frequency.  In 

electronics, multiplication is performed by a mixer.   Recall that when you multiply two cosines you get sum and difference terms.  

For example, the bottom channel gives,

2𝐺 𝑀0 cos 𝜔𝐿𝑡 + 𝜙 cos 𝜔𝑅𝑡 = 𝐺𝑀0 cos 𝜔𝐿 − 𝜔𝑅 𝑡 + 𝜙 + 𝐺𝑀0 cos 𝜔𝐿 + 𝜔𝑅 𝑡 + 𝜙

The reference frequency is chosen to be close to or equal to 𝜔𝐿 .  That way 𝜔𝐿 − 𝜔𝑅 << 𝜔𝑅 and 𝜔𝐿 + 𝜔𝑅  ≈ 2𝜔𝑅 .   The mixer 

outputs are filtered to reject the high frequency  𝜔𝐿 + 𝜔𝑅 component but let through the low frequency 𝜔𝐿 − 𝜔𝑅  component.   This 

process generates two outputs, 90° out of phase (i.e., in quadrature) each proportional to the magnitude of the rotating magnetic 

moment M0.  We refer to these components as the real and imaginary parts of a quadrature detector signal,  

𝑆 𝑡 = 𝑅𝑒 𝑡 + 𝑖 𝐼𝑚 𝑡

Except for an overall constant and phase, this is a replica of the magnetic moment  𝑀 𝑡  as measured in a frame of reference 

rotating at the reference frequency 𝜔𝑅 .  The phase 𝜙 comes from phase shifts in the cables and electronics and can be easily 

eliminated after the signal is digitized.   

cos 𝜔𝑅𝑡

cos 𝜔𝑅𝑡 +
𝜋

2

𝐺𝑀0 cos 𝜔𝐿 − 𝜔𝑅 𝑡 + 𝜙

𝐺𝑀0 sin 𝜔𝐿 − 𝜔𝑅 𝑡 + 𝜙
Im(t)

Re(t)

𝜔𝐿 − 𝜔𝑅 𝑡 + 𝜙

𝐺𝑀0

2

filter

filter



Suppose we have an FID that decays down with a time constant T2.  In a frame rotating at 𝜔𝑅 the magnetic moment would be, 

𝑀𝑥 = 𝑀0 𝑒− Τ𝑡 𝑇2 cos 𝜔𝐿 − 𝜔𝑅 𝑡  𝑀𝑦 = 𝑀0𝑒− Τ𝑡 𝑇2 sin 𝜔𝐿 − 𝜔𝑅 𝑡

But that’s just the same as the signal from our quadrature detector, aside from an overall constant factor and phase shift.  It’s 

usual to define Ω ≡ 𝜔𝐿 − 𝜔𝑅  as the offset frequency.  It’s just the frequency at which 𝑀  precesses in the reference frame 

rotating at 𝜔𝑅 .  The real and imaginary parts of the quadrature signal are shown below.  There are oscillations at Ω and a decay 

with time constant T2  . The quadrature detector signal, written as a complex number, is now,

𝑆 𝑡 = 𝑅𝑒 𝑡 + 𝑖 𝐼𝑚 𝑡 = 𝐺𝑀0𝑒− Τ𝑡 𝑇2𝑒𝑖Ω𝑡𝑒𝑖𝜙

The Fourier transform is given by,

𝑆 𝜔 = න
0

∞

𝑒−𝑖𝜔𝑡 𝐺𝑀0𝑒− Τ𝑡 𝑇2𝑒𝑖Ω𝑡𝑒𝑖𝜙 𝑑𝑡

𝑆 𝜔 = 𝐺𝑒𝑖𝜙
𝑀0𝑇2

1 + 𝜔 − Ω  𝑇2  2
+ 𝑖

𝑀0𝑇2 Ω − 𝜔

1 + 𝜔 − Ω  𝑇2  2

       S 𝜔 = 𝐺𝑒𝑖𝜙 𝑅𝑒 𝜔 + 𝑖 𝐼𝑚 𝜔

The 𝑒𝑖𝜙 factor can be eliminated by multiplying 𝑆 𝜔  by 𝑒−𝑖𝜙 .   G is just 

an overall scale factor that’s not usually of interest unless you’re trying to 

assess your signal size.   

The physically relevant spectrum is  𝑅𝑒 𝜔 + 𝑖 𝐼𝑚 𝜔  which consists of 

the familiar absorptive and dispersive response functions.   I’ve drawn 

the spectra for the case in which Ω < 0. This means that 𝜔𝐿 < 𝜔𝑅 so the 

Larmor frequency is less than the reference frequency.  But we could set 

the reference frequency so that 𝜔𝐿 > 𝜔𝑅 , in which case the spectrum 

would show a peak for Ω < 0.  

Time

Real

Imag

𝑅𝑒 𝜔
𝐼𝑚 𝜔

Ω
0

𝜔



https://mriquestions.com/real-v-imaginary.html#/

Often, particularly in MRI work, one just uses the magnitude spectrum,

𝑀𝑎𝑔 𝜔 = 𝑅𝑒 𝜔 2 + 𝐼𝑚 𝜔 2

The figure below shows MRI images in which each pixel corresponds to a separate NMR spectrum centered on a different Larmor 

frequency.   The figures shown images produced using the real, imaginary and magnitude spectra are used.  Most MRI often uses  

just magnitude spectrum. 

Quadrature detection is used throughout RF communications.  It’s often call IQ detection where I refers to in-phase 

(Real) and Q to the quadrature phase (Imaginary).   Along with the phase separation it has another crucial aspect.   It converts the 

original high frequency signal, whose Larmor frequency could be hundreds of MHz, down to a much lower frequency signal, which  

could be hundreds of kHz. The lower frequency is much easier and cheaper to digitize precisely.  

Real Imag Mag



Phase of RF pulses

Throughout FTNMR you’ll see pulses referred to as 90x or 180y or 90-x , etc.  The subscript refers to the axis of the rotating frame 

along which the B1 field is applied.  Whether it’s x, y, -x or –y depends on the phase of transmitted RF pulses relative to each other. 

If we send out the pulse in the left figure we can arbitrarily assign that to the x direction in the rotating frame.  If, ins tead, we sent 

out a pulse like the one in the right figure, that’s 90° out of phase with the left one so it would be along the y axis of the rotating 

frame.  If these pulses were the right length to rotate the magnetization by 90° then we’d call the first one a 90x and the second one 

a 90y,  etc.

xR

yR

z

B1x

xR

yR

z

B1y

90x 90y



Phase Cycling

 Phase cycling is a way to correct for electronic imbalances in the RF electronics and to focus on particular features of 

the NMR signal.   The figure below shows what happens as we cycle the phase of the applied RF pulses through 90 degrees.  

Imagine, for variety, the nucleus has 𝛾𝑛 < 0  so it precesses counterclockwise around the field.  (1) After a 90x pulse, M ends up 

along the –y axis in the rotating frame.  Assume that we’ve adjusted the overall phase of the received signals so Re(t) corresponds 

to the –y direction and Im(t) corresponds to the x direction in the rotating frame.  Then the two signals and their spectra would look 

like the first line.  (2) Apply a 90y pulse.  Now M ends up initially along the +x direction.   The signals and corresponding transforms 

are shown.  (3) Apply a 90-x pulse, etc.   

https://u-of-o-nmr-facility.blogspot.com/2010/11/phase-of-nmr-spectrum.html

Now take the averages,

( Re1 + Im2 – Re3 + Im4 ) / 4 = <Re>

and, 

( Im1 – Re2 -Re3 +Re4 ) / 4 = <Im> 

In real spectrometers, the Re and Im 

channels (i.e., two physically distinct 

mixers and amplifiers) are not perfectly 

matched.  In addition, transient signals 

from the transmitter and coil interfere with 

the FID.  By cycling through these 4 

phases and averaging them in this way, 

we subtract away many of these 

undesirable effects and get a much 

cleaner representation of desired NMR 

signal. 

The procedure just described is called 

CYCLOPS.   For more elaborate pulse 

sequences there are more elaborate 

phase cycling schemes. 



Amplifier, filter, 

digitizer (SpinCore)

RF pulses 

B0 

B1(t)

Cmatch 

Ctune 

Lcoil 

Electronics    

RF pulse sequencer

NMR 

signal

Power amplifier Crossed 

diodes

1.  The pulse sequencer generates a sequence of radio 

frequency (RF) pulses, usually of order 1 Vpp . 

2. The pulses are amplified in the power amp, often up 

to several hundred Volts.  These travel down to the 

probe circuit.   Cmatch and Ctune are adjusted to 

impedance match the LC circuit to the 50 Ohm 

transmission line at the frequency of interest.  This 

maximizes the B1 field acting on the spins. 

3. The returning NMR signal is amplified, filtered, 

digitized and then Fourier transformed by the computer 

into an NMR spectrum.

Τ𝜆 4 cable

Computer
Computer



Transmitting the RF pulse

During the application of the RF pulse, the effective circuit looks like the one shown below.  The receiving side 

appears to be disconnected due to the presence of the quarter wave transmission line and crossed diodes.  The RF pulses 

sent down to the coil are very large, often hundreds of volts.  The intent is to create as large a B1 field as possible and therefore 

the shortest time for a 90° pulse,

𝛾𝑛𝐵1𝜏90 =
𝜋

2
 

If B1 is large then during the short time the pulse acts, 

that part of the Hamiltonian driving the spins,

𝐻1 = −𝛾𝑛 ℏ 𝐵1 ∙ Ԧ𝐼

dominates things like relaxation and the RF pulse is 

maximally efficient at rotating the spins.   To maximize B1 

it’s necessary to make sure no power from the amp is 

reflected back.  That way all of it goes toward generating 

current in the coil.  Since no average power can be 

dissipated in an ideal inductor or capacitor, all the power 

must be dissipated in the coil resistance R.   And since 

power = I2R, that leads to the maximum current I though 

R and Lcoil and therefore the maximum B1  .  

 The probe circuit consists of Lcoil , two 

capacitors, Ctune , Cmatch  and the internal resistance of the 

coil.  It’s connected through a coaxial cable to the power 

amplifier.   Think of the RF pulse as a wave travelling 

down the coax and encountering the probe circuit.  The 

condition for no reflected wave is Zprobe = Zcable where Z is 

the impedance.   Since 𝑍𝑐𝑎𝑏𝑙𝑒 = 50 Ω  then we must 

adjust things so the probe also appears like a 50 Ω   

resistor.   That’s called impedance matching and is 

described next. 

Power Amp

Cmatch 

Ctune 
B0 

Lcoil 

50

B1(t)

Coax cable

Τ𝜆 4

RF pulse

Probe



50 Ω
coax50 Ω 𝐶𝑚𝑎𝑡𝑐ℎ

𝑅𝑐𝑜𝑖𝑙

𝐶𝑡𝑢𝑛𝑒

𝑉 𝑡 𝐿𝑐𝑜𝑖𝑙

Power Amp

The schematic diagram shows all the 

circuit elements relevant during the time 

the RF pulse is transmitted.  The goal is 

to make the impedance of the probe 

appear to be 50 Ω at the Larmor 

frequency.   The probe impedance can 

be written as the sum of two impedance,

            𝑍𝑝𝑟𝑜𝑏𝑒 = 𝑍𝑚𝑎𝑡𝑐ℎ + 𝑍2  

In general, the Z’s are complex.  For 

example,

𝑍𝑚𝑎𝑡𝑐ℎ = Τ1 𝑖𝜔𝐶𝑚𝑎𝑡𝑐ℎ

𝑍𝑚𝑎𝑡𝑐ℎ

𝑍2

The expression for Z2 is more complicated but it’s more instructive to just plot Zmatch and Z2 in the complex plane.  Each will vary 

with frequency.  The goal is to make the sum equal to 50 Ohms at the Larmor frequency.  That’s just an arrow along the horizontal 

axis.  We need two capacitors because there are two conditions to satisfy at 𝜔 = 𝜔𝐿 .  (1) Im( Zprobe) = 0 and (2)  Re( Zprobe) = 50 Ω.

𝑍2 𝜔𝐼𝑚 𝑍

𝑅𝑒 𝑍

𝑍𝑚𝑎𝑡𝑐ℎ = − Τ𝑖 𝜔𝐶𝑚𝑎𝑡𝑐ℎ 

50 Ω

With only Ctune we can certainly satisfy condition (1) so  Zprobe would be real.  

However, its value would be Z2 = Q2RCoil  where Q is the quality factor of the 

coil.  But Q2RCoil is not necessarily 50 Ohms.  With Cmatch added, we vary Ctune 

until Re(Z2) = 50 and use Zmatch to cancel out the imaginary part.  In practice, 

both capacitors are varied incrementally until a mininum reflection is achieved.



Mixing, filtering, 

digitizing, Fourier 

transformation.

B0 

Cmatch 

Ctune 

Lcoil 

RF signal  ( 10-6 V level)

Receiving the NMR signal   

Low noise preamp

After the large RF pulse the crossed diodes turn off and act like open switches.  The transmitter is therefore 

disconnected from the probe.   The NMR signal, which is often microvolts in amplitude, travels through coax cables to the low noise 

preamplifier which has a 50 Ohm input impedance so it matches to the coax cables.   After amplification the signal goes through 

quadrature detection, digitization and Fourier transformation to generate an NMR spectrum.



Chemistry 

Medicine (MRI)

Geology

Physics

Applications of NMR

Herbert Gutowsky (U. Illinois)

First to apply NMR to the 

identification of compounds. 
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Chemical Shift

( )0 1nucleus ChemicalB B = −

f NMR g n B0

It’s only for an isolated spin ½ nucleus that the precession frequency is at exactly −𝛾𝑛𝐵0. In general the nucleus in 

a solid, liquid or gas feels the effect of nearby electrons and other nuclei, both of which shift the energy spacing between levels 

and lead to small shifts Δω in the NMR absorption frequency.   These shifts are fingerprints for molecular structure.   For 

example, the external field B0 perturbs the orbital motion of nearby electrons.  This perturbation, in turn, changes the effective 

magnetic field seen by the nucleus.  B0 is “shielded” meaning the effective field is lower than B0 by an amount known as the 

chemical shift.  

𝜔𝑁𝑀𝑅 = 𝜔𝐿 1 − 𝜎𝐶ℎ𝑒𝑚𝑖𝑐𝑎𝑙

𝜔𝑁𝑀𝑅

Chemical shifts are tiny and are generally measured in parts per million (ppm).   They should be measured relative to an idea l 

spin ½ nucleus.  For 1H or 13C, a good reference is the corresponding 1H or 13C resonance absorption line in a material known 

as TMS, whose structure is shown.   The chemical shift  is generally shown as dimensionless number, written in parts per 

million:  

𝛿𝜔

𝛿 𝑝𝑝𝑚 = 106 Τ𝜔𝑇𝑀𝑆 − 𝜔𝑁𝑀𝑅 𝜔𝑇𝑀𝑆 = 106 Τ𝑓𝑇𝑀𝑆 − 𝑓 𝑓𝑇𝑀𝑆

𝜔𝐿



Fine structure of liquid NMR lines 

Chemical shift only

4 equivalent protons in a molecule give same 

chemical shift:  1 unsplit NMR line. 

We now have 2 inequivalent sets of protons (green and red).

The green proton signal is chemically shifted to about 

6 ppm and further split into 4 lines by J-coupling to the

group of 3 red protons.  This group has 4 possible spin 

states while the green proton line is split into 4.  

The red protons are all chemically shifted to about 2.1 ppm 

but split into 2 lines by J-coupling to the green proton,

which has only 2 possible states.  

𝛿 𝑝𝑝𝑚 = 106 Τ𝑓𝑇𝑀𝑆 − 𝑓𝑁𝑀𝑅 𝑓𝑇𝑀𝑆

𝜹 𝒑𝒑𝒎

Chemical shifts + J-coupling

J-coupling gives rise to fine structure in the NMR spectrum.  In chemical NMR, the J-coupling comes from an indirect 

interaction between different spins of the same molecule, mediated by electrons in the chemical bonds.   In the first spectrum 

we see only a single NMR line chemically shifted from TMS by 3.73 ppm.  There is no further splitting.   In the lower figure,  we 

see two different chemically shifted lines which are further split by J-coupling.  



Interaction between nuclear

spins, mediated by electrons

In chemical bonds.

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐽 Ԧ𝐼1 ∙ Ԧ𝐼2

This is the J-coupling. 

Figures from www.chemistry.msu.edu

J-coupling (proton NMR)

m = 3/2

m = 1/2

m = - 1/2

m = - 3/2

H

3 coupled, equivalent hydrogens : 

Total spin I = 3/2

4 possible states.   Like 4 possible “fields”
to act on H. 

1 way to get m = 3/2

3 ways to get m = ½ 
3 ways to get m = -½ 

1 ways to get m = - 3/2 





Magnetic Resonance Imaging (MRI)

Spins in different magnetic fields have different Larmor frequencies.  

P. Lauterbur, P. Mansfield, Nobel Prize in Medicine, 2003 



Controlled field gradients

Apply a field gradient : 

      B = B0 + G z.

Larmor frequency depends on z:

𝜔𝐿 𝑧 = 𝛾𝑛𝐵0 + 𝛾𝑛 𝐺𝑧

B0(z)

Spins in different “z-slices” (1) precess 

at different rates and (2) respond to 

different frequencies.

  
w

L
z

1( )

  
w

L
z

2( )

  
M z

1( )

  
M z

2( )

We can measure properties of nuclear 

spins (M, T1, T2) at each location.   

This is an image…MRI



Liquid helium cooled magnets for MRI



MRI field configuration

B0 = 1.5 T

Birdcage coil produces 

B1(t) perpendicular to B0 .



Selective Excitation

Mi is the nuclear magnetic moment

in slice i.  

Mi proportional to number of 

protons, amount of blood, 

etc.

Magnetic resonance image is a map of Mi . 

Add a field gradient along z. 

90° 
pulse 

at ω2

 

M1 

ω1

 

M2

ω2

M3

ω2

M1 

ω1

 

M2

ω2

M3

ω2

M1

M2

M3

B0



y-gradient 

(frequency encoding)

t

x-gradient 

(phase encoding)

z-gradient   (select slice 

along z direction )

Selective 90° 

pulse

signal

http://www.cis.rit.edu/htbooks/mri/chap-7/chap-7.htm



Apply y gradient: M1, M2 

precess at ω1, M3, M4 

precess at ω2.  Record FID. 

x

𝜔1

𝜔2

Spectrum

𝜔1 𝜔2

M1 + M2

M3 + M4

x

y

z-slice

M1 M 2

M 3
M 4

Apply x-field  gradient.

Phase encoding.

x

y

ϕ = 0 ϕ = 0

M1
M 2

M 3
M 4

Fourier transform FID

𝐹𝐼𝐷  𝑡 , ∆𝜙 = 0 = 𝑀1𝑒𝑖𝜔1𝑡 + 𝑀2𝑒𝑖𝜔1𝑡 + 𝑀3𝑒𝑖𝜔2𝑡 + 𝑀4𝑒𝑖𝜔2𝑡



Apply y gradient: M1, M2 

precess at ω1, M3, M4 

precess at ω2.  Record FID. 

x

y

ω1

ω2

Spectrum

ω1 ω2

M1 - M2

M3 - M4

x

y

z-slice

M1 M 2

M 3
M 4

Apply x-gradient: Rotate 

phase of M2, M4 by π.

x

y

ϕ = 0 ϕ = π

M1
-M2

M 3
-M 4

Use spectra for both phases to get M1, 

M2, M3, M4 individually.   These 
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Signal from coil contains information from all the “voxels”.  Each voxel 

contains a group of spins centered at some point (x,y,z).  

Spins in oxygenated and deoxygenated blood have different T2 times.   

Functional MRI uses this T2 difference for contrast.



T1 in metals

J.J. Spokas and C.P. Slichter, Phys. Rev. 113, 1462 (1959)

aluminum

  I

T1 in metals typically follows a 1/T law, often known as Korringa-like relaxation.  It comes from the hyperfine 

interaction between nuclear spins and the spins of mobile, conduction electrons.  The 1/T dependence ultimately comes from 

the fact that electrons obey Fermi-Dirac statistics so no two can have the same quantum numbers.  Therefore the electrons in a 

metal fill a Fermi sea of states in which only a number proportional to kBT can participate in interactions.  

The plot shows that the Korringa law, 

𝑇1~
1

𝑇

holds in aluminum over 3 decades in temperature, all 

the way from its melting temperature to its 

superconducting transition temperature (TC = 1.2 K). 



T2 in solids

Things are somewhat easier to understand in solids. For insulators, relaxation  will still be determined by the dipole-dipole 

interaction,

𝐻12 = − Ԧ𝜇1 ∙ 𝐵12 =
𝜇0

4𝜋 𝑟12
3 Ԧ𝜇1 ∙ Ԧ𝜇2 − 3 Ԧ𝜇1 ∙ Ƹ𝑟12 Ԧ𝜇2 ∙ Ƹ𝑟12  Ԧ𝜇𝑖 = 𝛾𝑛𝑖

Ԧ𝐼𝑖

Ԧ𝑟12Ԧ𝜇1

Ԧ𝜇2

But now, the spins are located at fixed positions in a periodic lattice. At low 

temperatures we can ignore vibrations so all the Ԧ𝑟𝑖𝑗 are constant.  That gives rise to 

the so-called rigid lattice linewidth for solid NMR resonances.   As a rough 

estimate, we can take, the first term in the dipole field of spin 1 as felt by spin 2, 

𝐵12 ~
𝜇0

4𝜋

𝜇1

𝑟12
3  → 𝛿𝜔ℎ𝑜𝑚 ~ 𝛾𝑛𝐵12

For typical atomic spacings of a few Angstroms, B12  is a few Gauss (10-4 Tesla.)  A much more sophisticated calculation, in 

which we sum over all the spins in a cubic lattice with lattice constant r gives,

𝛿𝜔ℎ𝑜𝑚 ≈ 2.3
ℏ𝛾𝑛

2

𝑟3 𝐼 𝐼 + 1

where 𝐼 is the spin.  Unlike a liquid, there is no motional narrowing. T2 is given by,

𝑇2~
2

𝛿𝜔ℎ𝑜𝑚

It’s approximate because in solids the decay is not usually exponential but is more often Gaussian.  But in any case, 

homogeneous broadening in solids leads to broad NMR lines and rapidly decaying FIDs.  This puts greater demands on the 

electronics since things happen faster. 



NMR in geology1

NMR “well-logging” is widely used to examine the porosity of rocks as well as their oil and 

water content. 

1G. Coates, L. Xiao, M. Prammer, Haliburton Energy Services



NMR probe generates an inhomogeneous B-field.  Cylinders at different 

radii have different Larmor frequencies and can be separately identified.  

This is a form of magnetic resonance imaging.

B-fields from 

permanent magnets 

are small so Larmor 

frequencies are 

typically 600-800 

kHz.



S/V = surface/volume of pore.



Water in a single pore has a single T2.  With many pore sizes, there is a 

distribution of T2 values.



Distribution of T2 values is used to measure distribution of pore sizes in a 

rocks saturated with water.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

