Josephson Effect

In 1962, while still a graduate student, Brian Josephson predicted what
might be the most dramatic and far-reaching consequence of the long-range

phase coherence in a superconductor. Consider a device in which two

superconductors are separated by a weak link, such as a thin layer of insulating
material or a normal metal — a region where bulk superconductivity doesn’t exist.
Each superconductor is described by a GL wavefunction of the form,
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The current through the device is / and the voltage between the
superconductors is V. Josephson predicted,
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These equations imply that a supercurrent with magnitude |I| < I will flow | /
even with V= 0. |Iis called the critical current of the junction, typically in c
the microamp range. Ideally the current-voltage characteristic would look
as shown depending on junction parameters and the circuitry used to drive
them, curves may look quite different.




Discovery of the Josephson effect

John Rowell and Phil Anderson, both at Bell Telephone Labs, were the first to
observe the Josephson effect. Their junction involved two different superconductors, lead
and tin. A tin film was grown in an evaporator, followed by an oxide layer to form the weak
link. A lead film was then grown over the oxide. The circled region of the data shows a
peak current of 0.65 mA flowing at zero voltage. This is the Josephson effect. They also
observed this current oscillate as a function of applied magnetic field. The flat region for V

< 2 Vrepresents the superconducting energy gap. ForV >2 mV the IV curve becomes
ohmic, with I «< V.
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Fabrication of Josephson junctions

All kinds of weak links will show a Josephson effect. A standard method is to evaporate a superconductor like aluminum ( T. = 1.2 K),
then let it oxidize to form an insulating layer, then evaporate another layer of aluminum. Al junctions are still widely used and with modern
fabrication techniques, junctions can be made at the nanometer scale. Niobium (T.= 9.2 K) is desirable for its higher transition temperature
but it’s harder to work with.
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https;//angstromengineering.com/josephson-junction-thin-film-deposition-superconducting-circuits/

Even a narrow constriction of the superconducting material (less than a coherence
length) can serve as a weak link for Josephson effect. This kind of structure is called a
Dayem bridge.

Quantum computing has focused, largely, on circuits utilizing
Josephson junctions. In this case, it’s desirable to control the
nature of the weak link itself. The circuit shown uses a gate
electrode (as in a MOSFET) to change the properties of a
nanowire that serves as the weak link.
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https://physics.aps.org/articles/v8/87




Josephson voltage-phase relation

One way to see the Josephson voltage-phase equation is by looking at a type Il superconducting tube filled with vortices. In the figure
the vortices and the trapped magnetic field are are coming up out of the page. There’s an azimuthal current circulating around the perimeter of
the tube that generates the B field. But, as we have learned, if there’s a current flowing then vortices feel a Lorentz force that, in this case,
would push them outward. The only way to keep them stationary and maintain a persistent current is to pin them with defects. Howeuver,
thermal fluctuations will occasionally overcome the pinning force and vortices will slowly leak out. At any given moment the tube contains N
vortices and therefore the total flux through the page is ¢ = Ny . The total phase change as we go around the perimeter of the tube is,
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Faraday’s law says that d¢g/dt is the line integral of the electric field
around the loop, which is the induced EMF V,
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Since ¢o = h/2e we get the Josephson relation,
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You can find a simple derivation of the current-phase relation in the Feynman Lectures on Physics, Vol. Ill, ch. 21. I'll follow M.
Tinkham, Introduction to Superconductivity, Ch. 6. Start with a normalized the superconducting wavefunction,

g =Y/l

g is constant in the bulk superconducting regions. In the weak link region (0 < x < L), it obeys the GL equation with two boundary conditions,
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It’s not immediately obvious, but if there is a finite phase difference then the first

term in the equation dominates if & > L. Using just the first term in the differential

equation, a solution satisfying the boundary conditions is,

g(x) = (1= x/L) + (x/L)e™*

The current (in zero field) is now given by,

L_ hq oo '
= 5V = vy

- qh Area
~\2m L

> |1o|? sin AG = I sin A

Area is the cross-sectional area of the weak link and g = 2e. In its normal state, the weak link has a resistance R,, = p,L/Area where p,, is

its resistivity. Junctions are often characterized by the product,
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[1)o|? is proportional ns, the number density of superconducting electrons,
itself a strong function of temperature, as shown by the data on the left. A
microscopic calculation by V. Ambegaokar and A. Baratoff ( Phys. Rev. Lett.
10, 486 (1963)) showed that I-R,, is directly related to the energy gap A(T)
in BCS theory,
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for Sn-1-Sn and Pb-I-Sn junctions where | stands for insulator.



AC Josephson effect

Quite early on it was recognized that the Josephson equations would lead to extremely interesting and useful effects with time-
dependent voltages applied. Begin with the Josephson voltage-phase equation,
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Now apply a combination of AC and DC voltage: V =V, + V; coswt. The phase differenceis,
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Using the Josephson current relation and the same identity used to find the FM radio spectrum,
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At voltages given by,
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The current through the junction will acquire a DC value,
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Where the phase different AG,depends on initial conditions. That implies that
when the voltage-frequency relation is obeyed for any n, the DC current can vary
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Shapiro steps, after their discoverer. (S. Shapiro, Phys. Rev. Lett. 11, 80 (1963) )



In 1969 Parker et. al. reported extremely careful measurements on a variety of junctions verifying the universal relation,
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Since the change in voltage between steps is small, the AC voltage (V; cos wt) was applied by
irradiating the junction with 10 GHz microwaves. Some of their data is shown on the left.

By measuring the step locations using a precise voltage standard the authors could
determine e/h with very high precision and also verify the universality of the Josephson
voltage-phase relation.
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By now the Josephson relations have
been thoroughly verified by experiments. And
since frequency measurements can be made
with far more precision than voltage
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The equipment shown in the figure is a NIST programmable Josephson voltage standard. It
uses an array of about 20,000 junctions irradiated with 75 GHz microwaves to generate
voltages of up to 10 V with an accuracy of parts in 10,

Junctions Dielectric
/ — Q g 7 2
—3= Microwave Po _,.-"‘ . '
https:;//www.nist.gov/sri/standard-reference-

instruments/sri-6000-series-programmable-
josephson-voltage-standard-pjvs

(a) Ground Plane



The SQUID

Magnetic
field

Josephson
junction

Probably the most well-known Josephson device is shown on the right. 1 r
First conceived by R. Jaklevic, J. Lambe, A. Silver and J. Mercereau in 1964. It’s
a loop of superconductor interrupted by 2 Josephson junctions and called a
SQUID. That is short for superconducting quantum interference device. The
SQUID is the ultimate magnetic field sensor, capable of detecting changes in
magnetic flux of order 1077 ¢, and, depending on the area of the loop,
magnetic fields below 102 Tesla. As the magnetic flux threading the SQUID
loop increases, the critical current of the SQUID oscillates which, in turn, leads
to a voltage that oscillates periodically with flux. The SQUID is analogous to a Josephsnn
2-slit optical interferometer, except that the the interference takes place JMocten
between superconducting wavefunctions rather than light waves.

https.//www.circuitbread.com/textbooks/introduction-to-
electricity-magnetism-and-circuits/current-and-
resistance/superconductors
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Gauge invariant phase difference

Since we'll be dealing with guantum mechanics and magnetic fields we need to once more worry about gauge invariance. Physical quantities
like the current must be gauge invariant. Look first at the GL expression for the current,
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Imagine we choose a new gauge defined by, A=A+ Vx . Then J will remain the same if we choose the new wavefunction phase to be
' = 0 + qx/h. Butwith this gauge change the Josephson current would now become,
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which is not the same current we had before the gauge transformation. To fix things up we need to eliminate the term %(){2 — x1). Thatcan
be done by defining a new, gauge-invariant phase difference,
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where we’ve used,
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The current phase relation will now be gauge—invariant if we write it as I = I sin Ay. What about the voltage-phase relation? The Josephson
equations in a magnetic field are now,
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A current | =1, + 1, flows into the SQUID and out the other side and a magnetic flux ®p

2M3
A _l:l_ threads the loop. Assume, for simplicity, that the critical currents are the same for the

I two junctions. Then the total current is,
| —> - CI)B — ———> I = I;sin Ay, + I¢sin Ay,
l, 2e (3 . 2e (%,

o~

' AYo= 03— O+~ | A-dl  Ayy=6,— 0, +— | A-d
h J, hJ;
14 4

We also know that as we go around the entire loop the total phase change Af = 2mn . Otherwise the wavefunction would not be single-
valued. Taking a path around the loop starting at point 1 and returning, the total phase change is,
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The phase differences (8, — 6,) and (8, — 83) are within the superconducting wires of the loop where the current density is,
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If the integration path is taken many London penetration lengths from the surface of the wire, j =0 so AV + 2e A=0. Inthat case,
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Rearranging we get,
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The total current is given by,
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Hold the applied flux @5 fixed and vary Ay, until the current is a maximum,
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This is like a 2-slit interference pattern in which the position along the screen behind the 2 slits is replaced by the quantity n% . The
0

Imax = 2I¢

SQUID maximum zero voltage current (i.e., its critical current) now oscillates with a period of one flux guantum.

2
Imax 4
21,
ob—v v N N D
2 K i 1 2 o,

In real SQUIDs the two junctions don’t have equal critical currents to /,,,, doesn’t go all the way to zero but the periodicity remains. This is
analogous to a 2-slit interference pattern where the two slits don’t transmit equal amounts of light.



_[I— With this dependence of maximum current on the applied flux, the

SQUID becomes a flux to voltage converter, as shown below.
Fix the total current at some value I,. Solong as I, < I, the SQUID

[}) — e—— CI)B —— [} will remain in the zero-voltage state. Now increase the flux until 4, >
I, and a voltage is developed. As you continue to increase the flux,
Lnax Will periodically go above and below [, and the SQUID voltage will
_I:I_ oscillate with a period of one flux quantum. It’s possible to measure
changes in flux as small as §® ~10~7 ¢, . Depending on the area of the
V4 SQUID loop, fields of order 1022 Tesla can be measured.
I
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Here’s a niobium SQUID made using modern nanofabrication techniques.
The tiny square in the middle is the loop

https://nanocohybri.eu/wp-content/uploads/2019/01/Koelle_2.pdf




The combination of small area SQUIDS with scanning technology makes it possible to
map out the /ocal magnetic response of many different materials. The figure on the left
shows the arrangement of vortices in a copper oxide (high temperature) superconductor.
You can see that for the right combination of pinning sites, field and temperature the
arrangement of vortices is more like a glass than a periodic lattice.

https://www.nature.com/articles/srep08677

Probably the ultimate in technological
sophistication is the SQUID-on-a-tip. Here, the
SQUID loop is fabricated at the very tip of a
ultrafine tip at the 200 nm scale.

Finkler et al.,
Bridges Nano Lett.10 (2010)

https://nanocohybri.eu/wp-content/uploads/2019/01/Koelle_2.pdf



RCSJ model

A practical Josephson junction circuit must include not only the ideal Josephson characteristics but also and additional capacitance and
resistance associated with the weak link. The simplest circuit model is called RCSJ (resistively-capacitively-shunted-junction), shown
enclosed by the dashed lines. Assume the circuit is driven by an ideal current source /. Then Kirchoff’s current law gives,

I=1I:sinA8 + V/R+C dV/dt

RCSJ model

Using the voltage-phase equation we can convert this into an equation
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The left side is a constant. If it were zero, this would be the equation for
a nonlinear, damped harmonic oscillator with natural frequency w, and

quality factor Q given by,

J wp =+ 2elc/hC Q = wpRC

https.//www.researchgate.net/publication/374765107_A_New_Behavioral-
level_Model_of_Superconducting_Josephson_Junctions_with_Simulink/figure
s?lo=1

wy, is sometimes called the Josephson plasma frequency.

We can rewrite the differential equation to look like the motion of a particle of a mass M moving along the A8 axis subject to a potential
energy U and a drag force,
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The potential U(A@) looks like a sinusoid with with a tilted baseline — often termed a tilted washboard potential. Its downward slope
increases with the applied current /. Begin increasing the applied current /.

I1=0

In this case there is just a static solution with d A8/dt =0, V =0and I = I-sin A =0. The phase could also be stuck in some other
potential minimum for which A@ = 2nn. Since V =0 all the current flows through the junction and no current flows through R or C.

0< I <I¢

The washboard begins to tilt. The “particle” moves to the right to satisfy I = I sin A@ . The solution is still independent of time so V=0
and there is still no current through R or C.

I1>1,

Once the current exceeds I the solutions depend on time: dA6/dt + 0. Rightat/=/.the minima in the potential have zero slope so
the particle slides down the potential hill. On the flat regions it moves slowly and on the steeper portions it moves more rapidly, making
a continuous series of 21t phase slips. The current and voltage are periodic but non-sinusoidal as a function of time.

The simplest case to analyze is a junction with small quality factor, Q =
wpRC K 1. Itacts like a particle moving through a viscous fluid but in a

U(AQ) sinusoidal potential. We can ignore the second time derivative so the
phase difference obeys,
2e _ 2 s _1 dAfg
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Both the phase and therefore the junction current depends on time. The
total current I is constant but the time varying junction current leads to a
time-varying voltage whose time average can be measured with a
voltmeter,
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To find Vp¢, integrate the differential equation to find the time T it takes for A8 to change by 2. Then use the the Josephson voltage-phase
equation to obtain the average voltage across the junction as a function of applied current,
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The full I-V curve is shown below left. For/ </ the current is carried entirely Cooper pairs tunneling across the weak link. Once / >/ , time-

dependent currents and voltages develop and vV, =R /12 —12. Forl>>l.this expression extrapolates to Ohm’s law.

The above derivation holds for strongly dissipative junctions (Q << 1) in which case the |-V curve is reversible. Junctions like this have
negligible capacitance C. The weak link, rather than being an insulator, is often a short region of normal metal. When the weak link is an
insulator, the junction capacitance cannot be ignored. In that case the quality factor Q can be > 1 and the |-V curve becomes hysteretic. In
the limit that Q >> 1 the behavior is shown on the right. As the applied current increases to /- the voltage remains at zero. Once | >/.the
voltage jumps from zero to eV = 2A, corresponding to the energy required to break a Cooper pair. As the current increases the |-V curve
approaches Ohm’s law. For decreasing current, once the voltage reaches eV = 2A it stays at that value until the current reaches zero and
then returns to zero, as shown. For Q> 1 but not infinite, the returning curve intersects the vertical axis at I < I, known as the retrapping
current.

I
le N
C
T «— V, =R T l
I Voc one Ve
/ e
-— ¢

https;//bingweb.binghamton.edu/~suzuki/SolidStatePhy
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Qubits

The past 30 years or so have seen an explosion of activity in quantum information science. This entails manipulating and
measuring the states of many interconnected 2-level quantum systems. These 2-level systems, known as qubits, are a quantum
mechanical generalization of classical logic bits of 0 or 1. If the two eigenstates of the qubit are denoted |0) and |1) the system can be in
a superposition,

[y =a(®0)+b(®I[1)  lal®+|b]*> =1

This leads to an infinitely larger number of possible states than in the classical case. How to actually compute anything this way is a
fascinating subject but beyond the scope of this discussion. I'll focus just on the simplest Josephson junction qubit although many other
systems are being investigated as qubits for quantum computing. Just a spin % nucleus in a B-field is a perfectly fine qubit but
manipulating individual spins is exceedingly difficult and impractical with present technology.

Qubit engineering requires that we treat the electrical circuits as fully quantum mechanical.
Assuming it’s okay to even do that, a simple example would an LC circuit whose energy is given

by,

2 1
E=——=+=LI?
2C 2 |_ C
Treating the charge Q and current / as quantum mechanical variables, this would lead to
energies,
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But that’s not a two-level system, it’s an infinite ladder of equally spaced energies, so a simple LC circuit can’t be a qubit. What we need is
something that is still dissipation-free (like an ideal inductor) but which leads to unequal energy spacings. That’s where Josephson junctions
come in. Recall from our RSCJ model that the Josephson phase difference acts like a mass moving in a tilted washboard potential,

U=—E hl E—hlc
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This is an anharmonic potential. So if we replace the inductor by a Josephson junction the system will have unequal energy spacings.



The new circuit is shown on the right. It’s called a transmon qubit. Since
the potential energy is now anharmonic, the energy levels are no longer equally
spaced. That makes it possible to treat the lowest two as a separate two-level
system. In effect, the Josephson junction acts like a dissipation-free, nonlinear 0] >< _
inductor. In the qubit literature it's common to denote the lowest energy state
by |0) and the upper level by [1) . These are called the computational basis
states. For a spin % nucleus they would correspond to spin up and spin down.[1]

S

[1] This discussion is taken mostly from a review article, “A Quantum Engineer’s Guide to
Superconducting Qubits, P. Kranz, et. al., arXiv:1904.06560v5, (2021)

Phase as a macroscopic quantum variable

Before going on, it’s not immediately obvious that the nice energy level diagram can actually be seen
in the real world. Can we really treat the junction phase as a quantum mechanical variable? This idea was
first promoted by Tony Leggett. He and student A. Caldeira predicted that the phase should tunnel through
one of the barriers in the tilted washboard potential, like any good quantum system. (A.O. Caldeira and A.J.
Leggett, Ann. Phys. 149, 374 (1983)) Of course the Josephson equations come from the quantum
mechanical behavior of a huge number of electrons acting together in a superconducting state. But unless
the system is very cold, the phase acts usually like a classical variable as in the RCSJ model, albeit with
thermal fluctuations. If we treat the phase as a truly quantum mechanical then there will be a series of
unequally spaced energy levels in each well of the tilted washboard potential, shown below.
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| If you now irradiate the system with microwaves, this will lead to an
increase of events in which the phase either jumps over or tunnels
! through the potential barrier and out of the zero-voltage state. This was
N — first observed by J. Martinis, M. Devoret, J. Clark in 1985.
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The Martinis et. al. experiment showed that when each of the first three energy
transitions in the potential well was excited by microwaves, there was a peak in the
escape rate ['(P) of the phase, as predicted. The microwave frequency was fixed
but the energy spacing could be varied by changing the DC current bias /,
somewhat like change the B field in NMR. The data below shows that as the
temperature goes down, the energy levels are more and more well-defined and the
phase acts more like a true quantum variable. For qubits we want only the lowest

' pair of energy levels but it’s reassuring that they are all there.

J. Martinis, M. Devoret, J. Clark,

T ¥ Phys. Rev. Lett. 55, 1543 (1985) ~ -

There are many different processes that effectively broaden the Josephson junction energy levels
and most of them are reduced considerably as the system gets colder. The upshot is that for our
circuit to act like a true qubit we need it to be cold,

kgT
hwq
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For typical Josephson junction qubits the frequency f, = wq/Zn is generally in the low microwave
range. Fora 5GHz energy spacingand T=20mK, kgT/hw, = 0.1. To operate electronics as
such low temperature requires a dilution refrigerator, one example of which is shown. The lower
end of this device will operate at 10 - 20 mK while the upper end will be closer to 4 K. This entire
assembly will be surrounded by several layers of insulation and sits in a vacuum to reduce the heat
leak from room temperature.



Assuming the junction is cold enough to treat like a true 2-level quantum system, its Hamiltonian now has the form,
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The charge variable is 2e times the number of Cooper pairs n,, on the capacitor. The energy spacing of the two levels is given by,

2
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wyq is close to but not exactly equal to the Josephson plasma frequency w,, . Treating the lowest two states as a 2-level system, its
Hamiltonian can be written like any spin % system,

hw 1 0
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Now that we’re reduced the qubit to a 2-level system, the dynamics looks very much like NMR for a spin % system. Changing the state of
the qubit is like rotating the spin so we need some excitation pulse, in this case at the resonant qubit frequency w, . A picture of an actual
qubit with drive and readout lines is shown below. There are separate microwave drive and readout lines. For readout, the state of the
qubit is sensed by its interaction with a microwave resonator, shown by the meander line.

https://enccs.github.io/qas2023/notebooks/Qubit_Spectroscopy_Analysis/
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The quantum states for a 2-state system can always be
visualized as points on the Bloch sphere. This should look to you
just like the rotating frame in NMR. For spins with positive
gyromagnetic ratio, the higher energy state |1) corresponds to the
spin opposite to the B-field direction. The lower energy state
|0) would have its spin along the B-field. By applying a burst of
energy at the resonant frequency it’s possible to do a 90° pulse
around the y-axis and rotate the state from,

10) +11)

T
0) = pulse = [9) =——

This state would have an expectation value of,

(Yloxlp) =1

so it’s pointing along the x-direction, as expected. All of the
manipulations from NMR such as free-induction decays, inversion
recovery, spin echoes are all done on qubits. The data shown is
essentially an inversion-recovery measurement on a qubit. A
180° pulse inverts the “spin” and then the qubit state is monitored
for varying times afterward until it recovers to its equilibrium
value. Here T; = 85 usec.

Ideally, to do computations, we’d like T; to be infinite but unfortunately the qubit is not
entirely isolated from its environment. This problem of decoherence is a huge issue for
guantum computing. The colder we make the qubit the more of these decoherence
pathways are frozen out and the longer it can act like an isolated 2 level system.

“A Quantum Engineer’s Guide to Superconducting Qubits, P. Kranz,
et. al., arXiv:1904.06560v5, (2021)



Sensing the qubit state

In NMR it’s easy to drive and read out the state of the spins. We
apply RF pulses to a coil and generate a time-dependent magnetic field at
the resonant frequency. Then we pick up the voltage across the coil that’s
generated by Faraday’s law. The signal is then converted to a lower
frequency, digitized and Fourier transformed.

For qubits it’s considerably more complicated. To change the state
of the qubit it must be driven at or near its resonant frequency wg, as in
NMR. But to read out the state of the qubit, you don’t want to destroy
the guantum state it’s in. One scheme is to have the qubit coupled to an
electromagnetic resonator whose natural frequency w, is different from
wq of the qubit. The frequency of the resonator is changed from w,
depending on the state of the qubit. Now, when a microwave signal is sent
to the system (qubit + resonator) the signal reflected back will have a
different frequency depending on the state of the qubit. This is called a
dispersive readout. It’s one type of what they call a quantum
nondemolition measurement in that the measurement does not destroy
the guantum state of the qubit. The basicidea is shown below and the
more elaborate circuit diagram is shown on the right. The lower figure

show the two different frequencies that are read out, depending on the
state of the qubit.
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“A Quantum Engineer’s Guide to Superconducting Qubits, P. Kranz,
et. al., arXiv:1904.06560v5, (2021)
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