
Josephson Effect

  In 1962, while still a graduate student, Brian Josephson predicted what 

might be the most dramatic and far-reaching consequence of the long-range 

phase coherence in a superconductor.   Consider a device in which two 

superconductors are separated by a weak link, such as a thin layer of insulating 
material or a normal metal – a region where bulk superconductivity doesn’t exist.    
Each superconductor is described by a GL wavefunction of the form, 

𝜓1,2 = 𝑛𝑠 1,2 𝑒  𝜃1,2

The current through the device is I and the voltage between the 
superconductors is V.   Josephson predicted,

𝐼 = 𝐼𝐶 sin 𝜃2 − 𝜃1 = 𝐼𝐶 sin ∆𝜃
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These equations imply that a supercurrent with magnitude 𝐼 <  𝐼𝐶 will flow 
even with V = 0.   IC is called the critical current of the junction, typically in 
the microamp range.   Ideally the current-voltage characteristic would look 
as shown depending on junction parameters and the circuitry used to drive 
them, curves may look quite different. 
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Discovery of the Josephson effect

 John Rowell and Phil Anderson, both at Bell Telephone Labs, were the first to 
observe the Josephson effect.   Their junction involved two different superconductors, lead 
and tin.   A tin film was grown in an evaporator, followed by an oxide layer to form the weak 
link.  A lead film was then grown over the oxide.  The circled region of the data shows a 
peak current of 0.65 mA flowing at zero voltage.   This is the Josephson effect.  They also 
observed this current oscillate as a function of applied magnetic field.    The flat region for V 
< 2 V represents the superconducting energy gap.   For V > 2 mV the IV curve becomes 
ohmic, with 𝐼 ∝ 𝑉.

J.M. Rowell P.W. Anderson

P.W. Anderson and J.M. Rowell, Phys. Rev. Lett. 10, 230 
(1963)

https://www.researchgate.net/public
ation/225810477_Great_experiments
_in_physics



https://angstromengineering.com/josephson-junction-thin-film-deposition-superconducting-circuits/

Fabrication of Josephson junctions

 All kinds of weak links will show a Josephson effect.   A standard method is to evaporate a superconductor like aluminum ( TC = 1.2 K), 
then let it oxidize to form an insulating layer, then evaporate another layer of aluminum.  Al junctions are still widely used and with modern 
fabrication techniques, junctions can be made at the nanometer scale.  Niobium (TC = 9.2 K) is desirable for its higher transition temperature 
but it’s harder to work with. 

https://physics.aps.org/articles/v8/87

Quantum computing has focused, largely, on circuits utilizing 
Josephson junctions.  In this case, it’s desirable to control the 
nature of the weak link itself.  The circuit shown uses a gate 
electrode (as in a MOSFET) to change the properties of a 
nanowire that serves as the weak link. 

Even a narrow constriction of the superconducting material (less than a coherence 
length) can serve as a weak link for Josephson effect.  This kind of structure is called a 
Dayem bridge. 



Josephson voltage-phase relation

  One way to see the Josephson voltage-phase equation is by looking at a type II superconducting tube filled with vortices.   In the figure 
the vortices and the trapped magnetic field are are coming up out of the page.  There’s an azimuthal current circulating around the perimeter of 
the tube that generates the B field.  But, as we have learned, if there’s a current flowing then vortices feel a Lorentz force that, in this case, 
would push them outward.  The only way to keep them stationary and maintain a persistent current is to pin them with defects.    However, 
thermal fluctuations will occasionally overcome the pinning force and vortices will slowly leak out.   At any given moment the tube contains N 
vortices and therefore the total flux through the page is 𝜙𝐵 = 𝑁𝜙0 .   The total phase change as we go around the perimeter of the tube is,
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Faraday’s law says that Τ𝑑𝜙𝐵 𝑑𝑡 is the line integral of the electric field 
around the loop, which is the induced EMF V,
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Since  𝜙0 = Τℎ 2𝑒  we get the Josephson relation, 
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Current-phase relation 

 You can find a simple derivation of the current-phase relation in the Feynman Lectures on Physics, Vol. III, ch. 21.  I’ll follow M. 
Tinkham, Introduction to Superconductivity, Ch. 6.   Start with a normalized the superconducting wavefunction,

𝑔 = Τ𝜓 𝜓0

g is constant in the bulk superconducting regions.  In the weak link region ( 0 < x < L), it obeys the GL equation with two boundary conditions,  

𝜉2
𝑑2𝑔

𝑑𝑥2 + 𝑔 − 𝑔3 = 0 𝑔 0 = 1 , 𝑔 𝐿 = 𝑒𝑖∆𝜃



It’s not immediately obvious, but if there is a finite phase difference then the first 
term in the equation dominates if  𝜉 ≫ 𝐿 .  Using just the first term in the differential 

equation, a solution satisfying the boundary conditions is,

𝑔 𝑥 ≈ 1 − Τ𝑥 𝐿 + Τ𝑥 𝐿 𝑒𝑖∆𝜃 𝑥

The current (in zero field) is now given by, 

Ԧ𝑗 =  
ℏ𝑞

2𝑚𝑖
𝜓∗∇𝜓 − 𝜓 ∇𝜓∗

𝐼 =
𝑞ℏ

2𝑚

𝐴𝑟𝑒𝑎

𝐿
𝜓0

2 sin ∆𝜃 = 𝐼𝐶 sin ∆𝜃

https://www.sciencedirect.com/topics/physics-and-
astronomy/josephson-effect

𝐼𝐶𝑅𝑛 =
2𝑒ℏ

2𝑚
 𝜌𝑛 𝜓0

2

𝜓0
2 is proportional nS, the number density of superconducting electrons, 

itself a strong function of temperature, as shown by the data on the left.   A 
microscopic calculation by V. Ambegaokar and A. Baratoff ( Phys. Rev. Lett. 
10, 486 (1963)) showed that 𝐼𝐶𝑅𝑛 is directly related to the energy gap ∆ 𝑇  
in BCS theory,

𝐼𝐶𝑅𝑛 =
𝜋∆

2𝑒
 tanh

∆

2𝑘𝐵𝑇

for Sn-I-Sn and Pb-I-Sn junctions where I stands for insulator.

Area is the cross-sectional area of the weak link and q = 2e. In its normal state, the weak link has a resistance 𝑅𝑛 = Τ𝜌𝑛𝐿 𝐴𝑟𝑒𝑎  where 𝜌𝑛 is 
its resistivity.  Junctions are often characterized by the product, 
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AC Josephson effect

  Quite early on it was recognized that the Josephson equations would lead to extremely interesting and useful effects with tim e-
dependent voltages applied.  Begin with the Josephson voltage-phase equation,

𝑑∆𝜃

𝑑𝑡
=

2𝑒

ℏ
 𝑉

Now apply a combination of AC and DC voltage:  𝑉 = 𝑉0 +  𝑉1 cos 𝜔𝑡 . The phase difference is,

∆𝜃 =  ∆𝜃0 +
2𝑒𝑉0

ℏ
𝑡 +

2𝑒𝑉1

ℏ𝜔
sin 𝜔𝑡  

Using the Josephson current relation and the same identity used to find the FM radio spectrum,

𝐼 = 𝐼𝐶 sin ∆𝜃 =  𝐼𝐶 sin ∆𝜃0 +
2𝑒𝑉0

ℏ
𝑡 +
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At voltages given by,

2𝑒𝑉0

ℏ
= 𝑛𝜔 𝑛 ∈ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟

The current through the junction will acquire a DC value, 

𝐼𝐷𝐶 =  𝐼𝐶 𝐽𝑛

2𝑒𝑉1

ℏ𝜔
sin ∆𝜃0

Where the phase different ∆𝜃0depends on initial conditions.  That implies that 
when the voltage-frequency relation is obeyed for any n, the DC current can vary 
between 

±𝐼𝐶 𝐽𝑛

2𝑒𝑉1

ℏ𝜔

leading to constant current plateaus seen for each value of n.  These are called 
Shapiro steps, after their discoverer.  (S. Shapiro, Phys. Rev. Lett. 11, 80 (1963) )



In 1969 Parker et. al. reported extremely careful measurements on a variety of junctions verifying the universal relation,

2𝑒𝑉0

ℏ
= 𝜔 →  

2𝑒

ℎ
 =

𝑓

𝑉0
= 483.5976 ± 0.0012 𝑀𝐻𝑧/𝜇𝑉

 

 By now the Josephson relations have 
been thoroughly verified by experiments.  And 
since frequency measurements can be made 
with far more precision than voltage 
measurements, instead of using precise voltage 
measurements to test the Josephson 
equations, the volt is now defined via the 
Josephson effect.   The voltage at the nth 
Shapiro step is currently defined to be,

𝑉𝑛 =
ℎ

2𝑒
𝑛𝑓 =

𝑛𝑓

483.5979 𝑀𝐻𝑧

W.H. Parker, D.N. Langenberg, A. Denenstein, B.N. 
Taylor,  Phys. Rev. 177, 639 (1969)

Since the change in voltage between steps is small, the AC voltage (𝑉1 cos 𝜔𝑡) was applied by 
irradiating the junction with 10 GHz microwaves.   Some of their data is shown on the left.
By measuring the step locations using a precise voltage standard the authors could 
determine e/h with very high precision and also verify the universality of the Josephson 
voltage-phase relation.   

The equipment shown in the figure is a NIST programmable Josephson voltage standard.  It 
uses an array of about 20,000 junctions irradiated with 75 GHz microwaves to generate 
voltages of up to 10 V with an accuracy of parts in 1010.  

https://www.nist.gov/sri/standard-reference-
instruments/sri-6000-series-programmable-
josephson-voltage-standard-pjvs



https://einstein.stanford.edu/STEP/information/data/equiv2
.html

The SQUID 

 Probably the most well-known Josephson device is shown on the right.  
First conceived by R. Jaklevic, J. Lambe, A. Silver and J. Mercereau in 1964. It’s 
a loop of superconductor interrupted by 2 Josephson junctions and called a 
SQUID.  That is short for superconducting quantum interference device.  The 
SQUID is the ultimate magnetic field sensor, capable of detecting changes in 
magnetic flux of order 10−7𝜙0 and, depending on the area of the loop, 
magnetic fields below 10-15 Tesla.   As the magnetic flux threading the SQUID 
loop increases, the critical current of the SQUID oscillates which, in turn, leads 
to a voltage that oscillates periodically with flux.   The SQUID is analogous to a 
2-slit optical interferometer, except that the the interference takes place 
between superconducting wavefunctions rather than light waves. 

https://www.circuitbread.com/textbooks/introduction-to-
electricity-magnetism-and-circuits/current-and-
resistance/superconductors



Gauge invariant phase difference

Since we’ll be dealing with quantum mechanics and magnetic fields we need to once more worry about gauge invariance.   Physical quantities 
like the current must be gauge invariant.  Look first at the GL expression for the current, 

Ԧ𝑗 =
𝑞𝑛𝑠

𝑚
 ℏ∇𝜃 − 𝑞 Ԧ𝐴 

Imagine we choose a new gauge defined by,  Ԧ𝐴’ = Ԧ𝐴 +  ∇𝜒 .   Then Ԧ𝑗 will remain the same if we choose the new wavefunction phase to be
𝜃′ =  𝜃 +  Τ𝑞𝜒 ℏ .   But with this gauge change the Josephson current would now become,

𝐼 = 𝐼𝐶 sin ∆𝜃′ = 𝐼𝐶 sin 𝜃2 +
𝑞

ℏ
𝜒2 − 𝜃1 −

𝑞

ℏ
𝜒1 = 𝐼𝐶 sin ∆𝜃 +

𝑞

ℏ
𝜒2 − 𝜒1

which is not the same current we had before the gauge transformation.  To fix things up we need to eliminate the term 
𝑞

ℏ
𝜒2 − 𝜒1 .  That can 

be done by defining a new, gauge-invariant phase difference, 

∆𝛾 = 𝜃2 −  𝜃1 −
𝑞

ℏ
 න

1

2
Ԧ𝐴 ∙ 𝑑Ԧ𝑙 = 𝜃2 −  𝜃1 +

2𝑒

ℏ
 න

1

2
Ԧ𝐴 ∙ 𝑑Ԧ𝑙

where we’ve used,

න
1

2

∇𝜒 ∙ 𝑑Ԧ𝑙 = 𝜒2 − 𝜒1 𝑞 = −2𝑒

The current phase relation will now be gauge–invariant if we write it as 𝐼 = 𝐼𝐶 sin ∆𝛾.  What about the voltage-phase relation?  The Josephson 
equations in a magnetic field are now, 

𝐼 = 𝐼𝐶 sin ∆𝛾 
𝑑 ∆𝛾

𝑑𝑡
=

2𝑒

ℏ
 𝑉
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A current  I = Ia + Ib  flows into the SQUID and out the other side and a magnetic flux Φ𝐵    
threads the loop.  Assume, for simplicity, that the critical currents are the same for the 
two junctions.  Then the total current is,

𝐼 = 𝐼𝐶 sin ∆𝛾𝑎 +  𝐼𝐶 sin ∆𝛾𝑏 

∆𝛾𝑎= 𝜃3 −  𝜃2 +
2𝑒

ℏ
න

2

3

Ԧ𝐴 ∙ 𝑑Ԧ𝑙 ∆𝛾𝑏= 𝜃4 −  𝜃1 +
2𝑒

ℏ
න

1

4

Ԧ𝐴 ∙ 𝑑Ԧ𝑙

We also know that as we go around the entire loop the total phase change  ∆𝜃 = 2𝜋𝑛 .  Otherwise the wavefunction would not be single-
valued.   Taking a path around the loop starting at point 1 and returning, the total phase change is,

ර ∇𝜃 ∙ 𝑑Ԧ𝑙 = 𝜃2 − 𝜃1 + 𝜃3 − 𝜃2 + 𝜃4 − 𝜃3 + 𝜃1 − 𝜃4 = 2𝜋𝑛

Substituting expressions for ∆𝛾𝑎 and ∆𝛾𝑏 ,

𝜃2 − 𝜃1 + ∆𝛾𝑎  −
2𝑒

ℏ
න

2
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Ԧ𝐴 ∙ 𝑑Ԧ𝑙  + 𝜃4 − 𝜃3 + −∆𝛾𝑏 +
2𝑒

ℏ
න

1

4

Ԧ𝐴 ∙ 𝑑Ԧ𝑙 = 2𝜋𝑛

The phase differences 𝜃2 − 𝜃1  and 𝜃4 − 𝜃3  are within the superconducting wires of the loop where the current density is, 

Ԧ𝑗 =
𝑞𝑛𝑠

𝑚
 ℏ∇𝜃 − 𝑞 Ԧ𝐴 =

−2𝑒𝑛𝑠

𝑚
 ℏ∇𝜃 + 2𝑒 Ԧ𝐴 

If the integration path is taken many London penetration lengths from the surface of the wire, Ԧ𝑗 = 0  so  ℏ∇𝜃 + 2𝑒 Ԧ𝐴 = 0 .  In that case,

𝜃2 − 𝜃1 = න
1

2

∇𝜃 ∙ 𝑑Ԧ𝑙 =  −
2𝑒

ℏ
න
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න

3

4

Ԧ𝐴 ∙ 𝑑Ԧ𝑙
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ℏ
න

1
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Ԧ𝐴 ∙ 𝑑Ԧ𝑙 + ∆𝛾𝑎  −
2𝑒

ℏ
න
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ℏ
න
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Ԧ𝐴 ∙ 𝑑Ԧ𝑙 = 2𝜋𝑛



Rearranging we get,

∆𝛾𝑎 = ∆𝛾𝑏 + 2𝜋𝑛 +
2𝑒

ℏ
ර Ԧ𝐴 ∙ 𝑑Ԧ𝑙 = ∆𝛾𝑏 + 2𝜋𝑛 + 2𝜋

Φ𝐵

Φ0
 Φ0 = ℎ/2𝑒

The total current is given by, 

𝐼 = 𝐼𝐶 sin ∆𝛾𝑎 +  𝐼𝐶 sin ∆𝛾𝑏 = 2𝐼𝐶 sin ∆𝛾𝑏 + 𝜋
Φ𝐵

Φ0
 cos 𝜋

Φ𝐵

Φ0
 

Hold the applied flux Φ𝐵 fixed and vary ∆𝛾𝑏 until the current is a maximum,

𝐼𝑚𝑎𝑥 = 2𝐼𝐶 cos 𝜋
Φ𝐵

Φ0
 

This is like a 2-slit interference pattern in which the position along the screen behind the 2 slits is replaced by the quantity 𝜋
Φ𝐵

Φ0
  .   The 

SQUID maximum zero voltage current (i.e., its critical current) now oscillates with a period of one flux quantum. 

In real SQUIDs the two junctions don’t have equal critical currents to Imax doesn’t go all the way to zero but the periodicity remains.   This is 
analogous to a 2-slit interference pattern where the two slits don’t transmit equal amounts of light.   

Φ𝐵

Φ0

𝐼𝑚𝑎𝑥

2𝐼𝐶



𝐼𝑚𝑎𝑥 𝑛 + Τ1 2

𝐼𝑚𝑎𝑥 𝑛

With this dependence of maximum current on the applied flux, the 
SQUID becomes  a flux to voltage converter, as shown below.
Fix the total current at some value 𝐼𝑏.  So long as 𝐼𝑚𝑎𝑥 <  𝐼𝑏  the SQUID 
will remain in the zero-voltage state.  Now increase the flux until 𝐼𝑚𝑎𝑥 >
 𝐼𝑏 and a voltage is developed.   As you continue to increase the flux, 
𝐼𝑚𝑎𝑥  will periodically go above and below 𝐼𝑏  and the SQUID voltage will 
oscillate with a period of one flux quantum.  It’s possible to measure 
changes in flux as small as 𝛿Φ ~10−7𝜙0 .  Depending on the area of the 
SQUID loop, fields of order 10-12 Tesla can be measured. 

https://en.wikipedia.org/wiki/File:IV_curve.jpg
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https://nanocohybri.eu/wp-content/uploads/2019/01/Koelle_2.pdf

Here’s a niobium SQUID made using modern nanofabrication techniques.
The tiny square in the middle is the loop 



The combination of small area SQUIDS with scanning technology makes it possible to 
map out the local magnetic response of many different materials.  The figure on the left 
shows the arrangement of vortices in a copper oxide (high temperature) superconductor.  
You can see that for the right combination of pinning sites, field and temperature the 
arrangement of vortices is more like a glass than a periodic lattice.  

https://www.nature.com/articles/srep08677

Probably the ultimate in technological 
sophistication is the SQUID-on-a-tip.  Here, the 
SQUID loop is fabricated at the very tip of a 
ultrafine tip at the 200 nm scale.  

https://nanocohybri.eu/wp-content/uploads/2019/01/Koelle_2.pdf



𝐼 =  𝐼𝐶 sin ∆𝜃 +  Τ𝑉 𝑅 + 𝐶 Τ𝑑𝑉 𝑑𝑡

Using the voltage-phase equation we can convert this into an equation 
for ∆𝜃,  

𝐼 =  𝐼𝐶 sin ∆𝜃 +
ℏ

2𝑒𝑅

𝑑 ∆𝜃

𝑑𝑡
+

ℏ𝐶

2𝑒

𝑑2∆𝜃

𝑑𝑡2

𝐼
2𝑒

ℏ𝐶
=  𝜔𝑝

2 sin ∆𝜃 +
1

𝑅𝐶

𝑑∆𝜃

𝑑𝑡
+

𝑑2∆𝜃

𝑑𝑡2

The left side is a constant.  If it were zero, this would be the equation for 
a nonlinear, damped harmonic oscillator with natural frequency 𝜔𝑝 and 

quality factor Q given by, 

𝜔𝑝 = Τ2𝑒𝐼𝐶 ℏ𝐶  𝑄 = 𝜔𝑝𝑅𝐶

 𝜔𝑝 is sometimes called the Josephson plasma frequency. 

RCSJ model

A practical Josephson junction circuit must include not only the ideal Josephson characteristics but also and additional capacitance and 
resistance associated with the weak link.  The simplest circuit model is called RCSJ (resistively-capacitively-shunted-junction), shown 
enclosed by the dashed lines.   Assume the circuit is driven by an ideal current source I .  Then Kirchoff’s current law gives,

https://www.researchgate.net/publication/374765107_A_New_Behavioral-
level_Model_of_Superconducting_Josephson_Junctions_with_Simulink/figure
s?lo=1
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We can rewrite the differential equation to look like the motion of a particle of a mass M moving along the ∆𝜃 axis subject to a potential 
energy U and a drag force,

𝑀
𝑑2∆𝜃

𝑑𝑡2 = −𝜂
𝑑∆𝜃

𝑑𝑡
−

𝜕𝑈

𝜕∆𝜃
 → 𝑀 ≡

ℏ

2𝑒

2

𝐶 𝜂 ≡
ℏ

2𝑒

2
1

𝑅
 𝑈 = −𝐸𝐽 cos ∆𝜃 −

ℏ

2𝑒
𝐼 ∆𝜃  𝐸𝐽 ≡

ℏ 𝐼𝐶

2𝑒



The potential 𝑈 ∆𝜃  looks like a sinusoid with with a tilted baseline – often termed a tilted washboard potential.   Its downward slope 
increases with the applied current I .  Begin increasing the applied current I. 

𝑰 = 𝟎  

In this case there is just a static solution with Τ𝑑 ∆𝜃 𝑑𝑡 = 0 , 𝑉 = 0 and 𝐼 = 𝐼𝐶 sin ∆𝜃 = 0 .   The phase could also be stuck in some other 
potential minimum for which ∆𝜃 = 2𝜋𝑛.   Since V = 0 all the current flows through the junction and no current flows through R or C.

𝟎 <  𝑰 < 𝑰𝑪 

The washboard begins to tilt.  The “particle” moves to the right to satisfy 𝐼 = 𝐼𝐶 sin ∆𝜃 .   The solution is still independent of time so V = 0 
and there is still no current through R or C. 

𝑰 > 𝑰𝑪    

Once the current exceeds IC the solutions depend on time:  Τ𝑑∆𝜃 𝑑𝑡 ≠ 0 .   Right at I = IC the minima in the potential have zero slope so 
the particle slides down the potential hill.   On the flat regions it moves slowly and on the steeper portions it moves more rapidly, making 
a continuous series of 2𝜋 phase slips.   The current and voltage are periodic but non-sinusoidal as a function of time.   

∆𝜃/2𝜋

Τ𝐼 𝐼𝐶 = 0

Τ𝐼 𝐼𝐶 = 0.5

Τ𝐼 𝐼𝐶 = 1

𝑈 ∆𝜃

The simplest case to analyze is  a junction with small quality factor, 𝑄 =
𝜔𝑝𝑅𝐶 ≪ 1 .  It acts like a particle moving through a viscous fluid but in a 

sinusoidal potential.  We can ignore the second time derivative so the 
phase difference obeys,

    𝐼
2𝑒

ℏ𝐶
=  𝜔𝑝

2 sin ∆𝜃 +
1

𝑅𝐶

𝑑∆𝜃

𝑑𝑡

Both the phase and therefore the junction current depends on time.   The 
total current I is constant but the time varying junction current leads to a 
time-varying voltage whose time average can be measured with a 
voltmeter,

𝑉𝐷𝐶 =
1

𝑇
න

0

𝑇

𝑉 𝑡 𝑑𝑡 =
1

𝑇
න

0

𝑇 ℏ

2𝑒

𝑑 ∆𝜃

𝑑𝑡
𝑑𝑡



To find VDC , integrate the differential equation to find the time T it takes for ∆𝜃 to change by 2𝜋.  Then use the the Josephson voltage-phase 
equation to obtain the average voltage across the junction as a function of applied current,

𝑉𝐷𝐶 =
2𝑒

ℏ

2𝜋

𝑇
= 𝑅 𝐼2 − 𝐼𝐶

2 𝐼 > 𝐼𝐶

The full I-V curve is shown below left.  For I < IC  the current is carried entirely Cooper pairs tunneling across the weak link.  Once I > IC  , time-

dependent currents and voltages develop and  𝑉𝐷𝐶 = 𝑅 𝐼2 − 𝐼𝐶
2 .   For I >> IC this expression extrapolates to Ohm’s law.   

The above derivation holds for strongly dissipative junctions (Q << 1) in which case the I -V curve is reversible.   Junctions like this have 
negligible capacitance C.  The weak link, rather than being an insulator, is often a short region of normal metal.   When the  weak link is an 
insulator, the junction capacitance cannot be ignored.  In that case the quality factor Q can be > 1 and the I-V curve becomes hysteretic.   In 
the limit that Q >> 1 the behavior is shown on the right.   As the applied current increases to IC the voltage remains at zero.  Once I > IC the 
voltage jumps from zero to 𝑒𝑉 = 2∆ , corresponding to the energy required to break a Cooper pair.  As the current increases the I -V curve 
approaches Ohm’s law.  For decreasing current, once the voltage reaches 𝑒𝑉 ≈ 2∆  it stays at that value until the current reaches zero and 
then returns to zero, as shown.  For Q > 1 but not infinite, the returning curve intersects the vertical axis at IR < IC, known as the retrapping 
current.

https://bingweb.binghamton.edu/~suzuki/SolidStatePhy
sics/25-4_Josephson_junction_and_DC_SQUID.pdf

VDC

I

IC

-IC

VDC = IR

VDC

IC

I

https://ourbigbook.com/cirosantilli/josephson-effect-regime



Qubits

 The past 30 years or so have seen an explosion of activity in quantum information science.  This entails manipulating and 
measuring the states of many interconnected 2-level quantum systems.   These 2-level systems, known as qubits, are a quantum 
mechanical generalization of classical logic bits of 0 or 1.   If the two eigenstates of the qubit are denoted ȁ ۧ0  and ȁ ۧ1  the system can be in 
a superposition,

ȁ ۧ𝜓 = 𝑎 𝑡 ȁ ۧ0 + 𝑏 𝑡 ȁ ۧ1  𝑎 2 + 𝑏 2 = 1

This leads to an infinitely larger number of possible states than in the classical case.   How to actually compute anything this way is a 
fascinating subject but beyond the scope of this discussion.   I’ll focus just on the simplest Josephson junction qubit although many other 
systems are being investigated as qubits for quantum computing.   Just a spin ½ nucleus in a B-field is a perfectly fine qubit but 
manipulating individual spins is exceedingly difficult and impractical with present technology.

Qubit engineering requires that we treat the electrical circuits as fully quantum mechanical.  
Assuming it’s okay to even do that, a simple example would an LC circuit  whose energy is given 
by,

𝐸 =
𝑄2

2𝐶
+

1

2
𝐿𝐼2

Treating the charge Q and current I as quantum mechanical variables, this would lead to 
energies, 

𝐸𝑛 = 𝑛 +
1

2
ℏ𝜔0  𝜔0 =

1

𝐿𝐶

But that’s not a two-level system, it’s an infinite ladder of equally spaced energies,  so a simple LC circuit can’t be a qubit.   What we need is 
something that is still dissipation-free (like an ideal inductor) but which leads to unequal energy spacings.   That’s where Josephson junctions 
come in.   Recall from our RSCJ model that the Josephson phase difference acts like a mass moving in a tilted washboard potential, 

𝑈 = −𝐸𝐽 cos  𝜙 −
ℏ

2𝑒
𝐼𝜙  𝐸𝐽 ≡

ℏ 𝐼𝐶

2𝑒

This is an anharmonic potential.  So if we replace the inductor by a Josephson junction the system will have unequal energy spacings. 



The new circuit is shown on the right.  It’s called a transmon qubit. Since 
the potential energy is now anharmonic, the energy levels are no longer equally 
spaced.  That makes it possible to treat the lowest two as a separate two-level 
system.   In effect, the Josephson junction acts like a dissipation-free, nonlinear 
inductor.   In the qubit literature it’s common to denote the lowest energy state 
by ȁ ۧ0  and the upper level by ȁ ۧ1  .   These are called the computational basis 
states.  For a spin ½ nucleus they would correspond to spin up and spin down.[1]   

[1] This discussion is taken mostly from a review article, “A Quantum Engineer’s Guide to 
Superconducting Qubits, P. Kranz, et. al., arXiv:1904.06560v5, (2021)

np

𝜙

Phase as a macroscopic quantum variable

 Before going on, it’s not immediately obvious that the nice energy level diagram can actually be seen 
in the real world.  Can we really treat the junction phase as a quantum mechanical variable?   This idea was 
first promoted by Tony Leggett.  He and student A. Caldeira predicted that the phase should tunnel through 
one of the barriers in the tilted washboard potential, like any good quantum system. (A.O. Caldeira and A.J. 

Leggett, Ann. Phys. 149, 374 (1983))   Of course the Josephson equations come from the quantum 
mechanical behavior of a huge number of electrons acting together in a superconducting state.   But unless 
the system is very cold, the phase acts usually like a classical variable as in the RCSJ model, albeit with 
thermal fluctuations.   If we treat the phase as a truly quantum mechanical then there will be a series of 
unequally spaced energy levels in each well of the tilted washboard potential, shown below. 

𝜙

If you now irradiate the system with microwaves, this will lead to an 
increase of events in which the phase either jumps over or tunnels 
through the potential barrier and out of the zero-voltage state.  This was 
first observed by J. Martinis, M. Devoret, J. Clark in 1985. 

A.J. Leggett



The Martinis et. al. experiment showed that when each of the first three energy 
transitions in the potential well was excited by microwaves, there was a peak in the 
escape rate Γ 𝑃  of the phase, as predicted.   The microwave frequency was fixed 
but the energy spacing could be varied by changing the DC current bias I, 
somewhat like change the B field in NMR.  The data below shows that as the 
temperature goes down, the energy levels are more and more well-defined and the 
phase acts more like a true quantum variable.   For qubits we want only the lowest 
pair of energy levels but it’s reassuring that they are all there.

J. Martinis, M. Devoret, J. Clark, 
Phys. Rev. Lett. 55, 1543 (1985)

There are many different processes that effectively broaden the Josephson junction energy levels 
and most of them are reduced considerably as the system gets colder.   The upshot is that for our 
circuit to act like a true qubit we need it to be cold, 

𝑘𝐵𝑇 

ℏ𝜔𝑞
 ≪ 1

For typical Josephson junction qubits the frequency Τ𝑓𝑞 = 𝜔𝑞 2𝜋 is generally in the low microwave 

range.   For a 5 GHz energy spacing and T = 20 mK,  Τ𝑘𝐵𝑇 ℏ𝜔𝑞  ≈ 0.1.  To operate electronics as 
such low temperature requires a dilution refrigerator, one example of which is shown.  The lower 
end of this device will operate at 10 - 20 mK while the upper end will be closer to 4 K.  This entire 
assembly will be surrounded by several layers of insulation and sits in a vacuum to reduce the heat 
leak from room temperature.  



Assuming the junction is cold enough to treat like a true 2-level quantum system, its Hamiltonian now has the form,

𝐻 =
𝑄2

2𝐶
− 𝐸𝐽 cos 𝜙 ≈

2𝑒 2

2𝐶
 𝑛𝑝

2  +
1

2
 𝐸𝐽𝜙2 −

1

24
𝐸𝐽𝜙4 = 4𝐸𝐶 𝑛𝑝

2  +
1

2
 𝐸𝐽𝜙2 −

1

24
𝐸𝐽𝜙4

The charge variable is 2e times the number of Cooper pairs 𝑛𝑝 on the capacitor.   The energy spacing of the two levels is given by,

ℏ𝜔𝑞 = 𝐸𝐶𝐸𝐽  − 𝐸𝐶 𝐸𝐶 =
𝑒2

2𝐶

𝜔𝑞 is close to but not exactly equal to the Josephson plasma frequency 𝜔𝑝 .    Treating the lowest two states as a 2-level system, its 
Hamiltonian can be written like any spin ½ system, 

𝐻 =
ℏ𝜔𝑞

2
 𝜎𝑧 ,  𝜎𝑧ȁ ۧ0 = ȁ ۧ0  𝜎𝑧ȁ ۧ1 = −1ȁ ۧ0  𝜎𝑧 =

1 0
0 −1

Now that we’re reduced the qubit to a 2-level system, the dynamics looks very much like NMR for a spin ½ system.    Changing the state of 
the qubit is like rotating the spin so we need some excitation pulse, in this case at the resonant qubit frequency 𝜔𝑞 .  A picture of an actual 

qubit with drive and readout lines is shown below.   There are separate microwave drive and readout lines.  For readout, the state of the 
qubit is sensed by its interaction with a microwave resonator, shown by the meander line.  

https://enccs.github.io/qas2023/notebooks/Qubit_Spectroscopy_Analysis/



https://www.researchgate.net/publication/335028508_A_Revie
w_on_Quantum_Computing_Qubits_Cryogenic_Electronics_and
_Cryogenic_MOSFET_Physics/figures?lo=1

The quantum states for a 2-state system can always be 
visualized as points on the Bloch sphere.  This should look to you 
just like the rotating frame in NMR.   For spins with positive 
gyromagnetic ratio, the higher energy state ȁ ۧ1  corresponds to the 
spin opposite to the B-field direction.  The lower energy state 
ȁ ۧ0  would have its spin along the B-field.  By applying a burst of 
energy at the resonant frequency it’s possible to do a 90° pulse 
around the y-axis and rotate the state from,

ȁ ۧ0 →
𝜋

2
 𝑝𝑢𝑙𝑠𝑒 → ȁ ۧ𝜓 =

ȁ ۧ0 + ȁ ۧ1

2

This state would have an expectation value of,

𝜓 𝜎𝑥 𝜓 = 1

so it’s pointing along the x-direction, as expected.    All of the 
manipulations from NMR such as free-induction decays, inversion 
recovery, spin echoes are all done on qubits.  The data shown is 
essentially an inversion-recovery measurement on a qubit.   A 
180° pulse inverts the “spin” and then the qubit state is monitored 
for varying times afterward until it recovers to its equilibrium 
value.  Here  𝑇1 = 85 𝜇𝑠𝑒𝑐. 

Ideally, to do computations, we’d like 𝑇1 to be infinite but unfortunately the qubit is not 
entirely isolated from its environment.  This problem of decoherence is a huge issue for 
quantum computing.  The colder we make the qubit the more of these decoherence 

pathways are frozen out and the longer it can act like an isolated 2 level system.

“A Quantum Engineer’s Guide to Superconducting Qubits, P. Kranz, 
et. al., arXiv:1904.06560v5, (2021)



Sensing the qubit state

 In NMR it’s easy to drive and read out the state of the spins.  We 
apply RF pulses to a coil and generate a time-dependent magnetic field at 
the resonant frequency. Then we pick up the voltage across the coil that’s 
generated by Faraday’s law.  The signal is then converted to a lower 
frequency, digitized and Fourier transformed.

 For qubits it’s considerably more complicated.   To change the state 
of the qubit it must be driven at or near its resonant frequency 𝜔𝑞, as in 

NMR.   But to read out the state of the qubit, you don’t want to destroy 
the quantum state it’s in.  One scheme is to have the qubit coupled to an 
electromagnetic resonator whose natural frequency 𝜔𝑟 is different from 

𝜔𝑞 of the qubit.  The frequency of the resonator is changed from 𝜔𝑟 
depending on the state of the qubit.  Now, when a microwave signal is sent 
to the system (qubit + resonator) the signal reflected back will have a 
different frequency depending on the state of the qubit.  This is called a 
dispersive readout.   It’s one type of what they call a quantum 
nondemolition measurement in that the measurement does not destroy 
the quantum state of the qubit.   The basic idea is shown below and the 
more elaborate circuit diagram is shown on the right.   The lower figure 
show the two different frequencies that are read out, depending on the 
state of the qubit. 

“A Quantum Engineer’s Guide to Superconducting Qubits, P. Kranz, 
et. al., arXiv:1904.06560v5, (2021)https://arxiv.org/abs/1504.06030v2
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