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489 S 04 Lecture 1

Overview of Course

1. Outline of course - Calendar on Web

2. Overview of properties of condensed matter - Mainly within independent-particle pic-
tures

3. Beyond the independent-particle approximations: Strong Interactions and Collective
Phenomena

(Article More is Different by P. W. Anderson.)

4. Background: Review of Statistical Mechanics (Basic formulas - many derivations and
developments for specific cases will be be part of course later.)
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Selected Review of Statistical Mechanics

1. Sources: Feynman, Ch. 1; A & M, p. 40-42, 426-8,452-4; Mihaly and Martin, Ch. 6
and related sections; Kittel, Ch 5, App. D; Reif, Ch. 9.1-9.8.

2. Fundamental Law of Statistical Mechanics: (Feynman, Ch. 1; Reif, Ch. 9; A & M, p.
426 footnote)

(a) For a general interacting system of N bodies , classical or quantum, let the the
exact states of the N-body system be labelled by m.

(b) If the system is in equilibrium with a temperature T, the probability the system
is in state m with energy Em is given by:
P (Em) = exp(−βEm)/Z, where β = 1

kBT .

(c) Z = partition function Z =
∑

m exp(−βEm).

(d) Since Z = exp(−βF ), where F is the Helmholz Free Energy also given below,
P (Em) = exp(−β(Em − F ))

(e) The expectation value of any quantum mechanical operator for a physical vari-
able is:
〈O〉 = 1

Z

∑
m〈m|O|m〉 exp(−βEm), where |m〉 denotes an eigenstate of the hamil-

tonian.

3. Thermodynamic quantities

(a) Internal Energy U = −dlnZ
dβ , which follows directly from the expressions above.

(b) For condensed matter it is important to use intensive quantities like energy den-
sity u = U

V where V is the volume, which are independent of the volume V in
the limit of large volume.

(c) One can also specify that the system is in the presence of externally applied
pressure and is in equilibrium with a reservoir that can supply particles at energy
the chemical potential µ. (The energy may also depend upon the magnetization
M and external field H, etc. )
Then a change in U is given by:
Change in U(S, V, N): dU = TdS − PdV + µdN + . . .

(d) Set of thermodynamic potentials derived by Legendre Transformations of the
variables:

• Energy: U
Enthalpy: H = U + PV
Helmholz Free Energy: F = U − TS = −kBT lnZ
Gibbs Free Energy: G = H − TS
Grand Canonical Potential: Ω = U − TS − µN

• Change in U(S, V, N): dU = +TdS − PdV + µdN + . . .
Change in H(S, P, N): dF = +TdS + V dP + µdN + . . .
Change in F (T, V, N): dF = −SdT − PdV + µdN + . . .
Change in G(S, P,N): dF = −SdT + V dP + µdN + . . .
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Change in Ω(S, P,N): dΩ = −SdT − PdV −Ndµ + . . .
where . . . indicates possible dependence upon other variables like stress/strain,
magnetization/field, etc.

(e) Heat Capacity: Cv ≡ dQ
dT |V , N = T ∂S

∂T |V , N ; and specific heat cv = Cv
V

4. Non-interacting particles

5. Define the possible energies of one particle to be εi. A state m of a system of N
particles is defined by specifying the one-particle state i of each one of the N particles.
Many relations can be defined independent of the statistics of the particles (Fermions,
Bosons, distinguishable) which are considered below. In all cases, the total energy is
Em =

∑
i niεi, where ni is the number of particles in the one-particle state i.

(a) Mean occupation of single particle state: < ni >= − 1
β

∂lnZ
∂εi

(b) Total energy density: u = − 1
V

∑
< ni > εi

(c) For each of the cases below, calculation of the distribution depends upon whether
or not the number of particles is conserved. The constraint of conservation of
number of particles introduces a difficulty counting the states. A convenient way
to treat this case is by introducing µ = chemical potential, which is the energy
of particles in a reservoir, to avoid the difficulty of constraining particle number.

6. Classical Statistics (A & M, p. 426-8)

(a) Equipartition: For any system with kinetic energy quadratic in the velocity of
each particle and potential energy quadratic in the position of each particle, the
average energy is 1

2kBT for each degree of freedom

(b) For ideal gas of particles in 3 dimensions: Cv = 3
2NkB

(c) For ideal harmonic oscillators in 3 dimensions: Cv = 3NkB

7. Particles obeying Bose-Einstein statistics

(a) Bose-Einstein distribution: < ni >= 1
exp(β(εi−µ))−1

(b) If particle number is not conserved, Planck Distribution: < ni >= 1
exp(βεi)−1

8. Particles obeying Fermi Statistics

(a) Fermi-Dirac distribution: < ni >= 1
exp(β(εi−µ))+1

(b) Chemical potential µ at T=0 is called the Fermi energy EF .

9. Expressions for a continuum of states

(a) n(ε) = 1
exp(β(εi−µ))±1

(b) In large system with many states, states near the chemical potential that domi-
nate the properties at low temperature.

10. Interacting Particles
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(a) For interacting particles, one must treat the full interacting system and the above
simple formulas do not in general apply.

(b) For localized states, particle interactions are often crucial: for example, consider
the hydrogen atom, where the first electron is bound by 1 Ryd, but a second
electron is barely bound.

(c) Example in homework problem.

(d) In condensed matter, the non-interacting approximation is often a good (even
excellent) approximation, but interactions can make quantitative or qualitative
changes.

11. Collective Behavior due to interactions - treated later in course

(a) Interactions can lead to qualitative effects: phase transitions, new types of order.

(b) Nevertheless, the first step is a “mean field approximation” in which the system
is treated as a collection of non-interacting system with each particle moving
in an “effective potential” due to the other particles. The result may be only
quantitative changes or qualitative changes in which the order of the system
changes. This is sufficient to describe many important problems like many phase
transformations, superconductivity, etc.

(c) The most difficult cases - where a “mean field approximation” is not adequate -
are beyond the scope of this course.


