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Physics 489 S 04 Lecture 2
Quantum Theory of Metals (Ashcroft and Mermin chapter 2)
Equilibrium Properties

. Overview

In metals electrons are not ”attached” to nuclei but are free to move
Quantum Mechanics explains the two key points:

e Electrons are able to move even at T=0, unlike any classical picture

e Yet the contribution to specific heat is much less than expected classically

. Experimental specific heat of solids

Classical theory: Cy = %k B X total number of degrees of freedom: nuclei and electrons
But classical value of 3kp per nucleus found only at High T.

Contribution of electrons much less than classical value.

(Also Cy o T3 at low T from nuclear contribution. More on this later.)

. Quantum Mechanics and exclusion principle explain shell structure of atoms

Pauli, Dirac and Fermi (1926-7) applied exclusion principle to free electrons
Sommerfeld (1928) showed linear T-dependence from electrons, seen at low T.
Predicted first - found experimentally later!

. Homogeneous electron gas. Free, independent electrons.

(Here we consider 3-dimensions; 2 dimensions given in homework.)
Schrédinger equation with periodic boundary conditions inside cubg of volume V = L3
Eigenstates labeled by k = 2T”(ngc, ny,n;) with iy = e*T; By = g—ka
Consider k as a vector: p = hk; v = %k
Sums over eigenstates per unit volume always have the form % Yok f(k)

: _ (2m\3 _ (2m)3
Volume. of k—sp?C(? occupied by 1each stattel—g(%)3 = 5
In continuum limit we replace v 3" — (5-)° [ d°k
We will use this in crystals also!

. Ground state

As in atoms, fill states from the lowest energy levels, obeying exclusion principle.
Highest occupied levels have Fermi wavevector kg and Fermi energy Er = %k%
Fermi surface in k-space separates filled from empty states.

Counting electrons leads to

e n= % = 2(%)3 fk<k:F d°k
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® O N = 5oy Skp=5zkp

Volume inclosed by Fermi surface Vpg = %’rk% = 31°n
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10.

11.

Useful units for numerical estimates.
n =3D density of free (valence) electrons in a metal.
n is represented by radius of electron rg, n = ﬁ usually expressed in units of Bohr

ERE
radius, ag = % = 0.529A4

Derived thermodynamic quantities (3D).

Average energy per electron, u/n = (3/5)Ep

Bulk modulus (electronic contribution), B = (2/3)nEp
Surprisingly good agreement with actual values of B.

. Density of states per unit energy energy. (Assume spin 1/2)

In continuum limit 2{ ¥, is replaced by [dEg(E), where g(E) = number of states
per unit volume per unit energy.
2 E
In 3D, g(E) = gﬁ(ﬁ)lﬂ
Result for free electron case, concept is general - applies to all quantum problems.

In 1D, g(E) oc E~Y2;in 2-D g(F)  E, i.e. g(E) is independent of E.

. Use Fermi-Dirac distribution at finite temperature.

Since the number of particles is conserved, the chemical potential © must in general
change as a function of T

Sommerfeld expansion (see also problem) show the magnitude of the shift

In 3-D p shifts to lower energy as T increases(Figure given in Kittel)

For T'>> Er, 1 < 0 and the distribution approaches the Maxwell distribution

Linear electronic specific heat. (Ashcroft and Mermin p 46-7; Kittel gives simpler
derivation)

Cy = g(Ep)k3T; g(Er) = 5 4= ocm

In ordinary materials dominates measured Cy at very low T.

Note that for a given density, Cy o« mass

"Heavy fermion” materials have anomalously large Cy with mass of order 1000 m..

Atomic units: h =m, = e =4meg =1
Leads to the fundamental units (see notes by E. Koch for derivation):
ap = 4megh? /mee? ~5.2918- 107''m  Bohr radius
Me = ~ 9.1095-10"3'kg electron mass
to = (4m€0)?h> / mee* = 2.4189- 107'7s  elementary unit of time
e = ~ 1.6022- 1071°C elementary charge



