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Physics 489 S 04 Lecture 2
Quantum Theory of Metals (Ashcroft and Mermin chapter 2)

Equilibrium Properties

1. Overview
In metals electrons are not ”attached” to nuclei but are free to move
Quantum Mechanics explains the two key points:

• Electrons are able to move even at T=0, unlike any classical picture

• Yet the contribution to specific heat is much less than expected classically

2. Experimental specific heat of solids
Classical theory: CV = 3

2kB x total number of degrees of freedom: nuclei and electrons
But classical value of 3kB per nucleus found only at High T.
Contribution of electrons much less than classical value.
(Also CV ∝ T 3 at low T from nuclear contribution. More on this later.)

3. Quantum Mechanics and exclusion principle explain shell structure of atoms
Pauli, Dirac and Fermi (1926-7) applied exclusion principle to free electrons
Sommerfeld (1928) showed linear T-dependence from electrons, seen at low T.
Predicted first - found experimentally later!

4. Homogeneous electron gas. Free, independent electrons.
(Here we consider 3-dimensions; 2 dimensions given in homework.)
Schrödinger equation with periodic boundary conditions inside cube of volume V = L3

Eigenstates labeled by k = 2π
L (nx, ny, nz) with ψk = eik·r; Ek = h̄2

2mk2

Consider k as a vector: p = h̄k; v = h̄
mk

Sums over eigenstates per unit volume always have the form 1
V

∑
k f(k)

Volume of k-space occupied by each state = (2π
L )3 = (2π)3

V
In continuum limit we replace 1

V

∑
k → ( 1

2π )3
∫

d3k
We will use this in crystals also!

5. Ground state
As in atoms, fill states from the lowest energy levels, obeying exclusion principle.
Highest occupied levels have Fermi wavevector kF and Fermi energy EF = h̄2

2mk2
F

Fermi surface in k-space separates filled from empty states.
Counting electrons leads to

• n = N
V = 2( 1

2π )3
∫
k<kF

d3k

• or n = 2
(2π)3

4π
3 k3

F = 1
3π2 k3

F

Volume inclosed by Fermi surface VFS = 4π
3 k3

F = 3π2n
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6. Useful units for numerical estimates.
n =3D density of free (valence) electrons in a metal.
n is represented by radius of electron rs, n = 1

4π
3

r3
s

usually expressed in units of Bohr

radius, a0 = h̄2

2me2 = 0.529A

Then kF = 1.92
rs

and EF = 1
2

e2

a0
(kF a))2 = 50.1eV

(rs/a0)2

7. Derived thermodynamic quantities (3D).
Average energy per electron, u/n = (3/5)EF

Bulk modulus (electronic contribution), B = (2/3)nEF

Surprisingly good agreement with actual values of B.

8. Density of states per unit energy energy. (Assume spin 1/2)
In continuum limit 2 1

V

∑
k is replaced by

∫
dEg(E), where g(E) = number of states

per unit volume per unit energy.
In 3D, g(E) = 2

3
n

EF
( E

EF
)1/2

Result for free electron case, concept is general - applies to all quantum problems.
In 1D, g(E) ∝ E−1/2; in 2-D g(E) ∝ E0, i.e. g(E) is independent of E.

9. Use Fermi-Dirac distribution at finite temperature.
Since the number of particles is conserved, the chemical potential µ must in general
change as a function of T
Sommerfeld expansion (see also problem) show the magnitude of the shift
In 3-D µ shifts to lower energy as T increases(Figure given in Kittel)
For T >> EF , µ < 0 and the distribution approaches the Maxwell distribution

10. Linear electronic specific heat. (Ashcroft and Mermin p 46-7; Kittel gives simpler
derivation)
CV = g(EF )k2

BT ; g(EF ) = 2
3

n
EF

∝ m
In ordinary materials dominates measured CV at very low T.
Note that for a given density, CV ∝ mass
”Heavy fermion” materials have anomalously large CV with mass of order 1000 me.

11. Atomic units: h̄ = me = e = 4πε0 = 1
Leads to the fundamental units (see notes by E. Koch for derivation):

a0 = 4πε0h̄
2 /mee

2 ≈ 5.2918 · 10−11m Bohr radius
me = ≈ 9.1095 · 10−31kg electron mass
t0 = (4πε0)2h̄3 /mee

4 ≈ 2.4189 · 10−17s elementary unit of time
e = ≈ 1.6022 · 10−19C elementary charge


