Physics 489 S 04 Lecture 3 Drude theory of transport in metals (Ashcroft and Mermin, chapter 1,3) Non-Equilibrium Properties

- 1. Drude theory of transport in metals (Ashcroft and Mermin, chapter 1) Model: Z electrons detach from each atom and flow freely through solid. Assumptions for classical theory of transport:
 - (1) Between collisions, electrons are free and independent.
 - (2) Collision randomizes direction of velocity.
 - (3) Relaxation time assumption. Mean free time $= \tau$.
 - (4) Collision thermalizes magnitude of velocity to local temperature
- 2. DC electrical conductivity.

 $V = IR \text{ or } \mathbf{j} = \sigma \mathbf{E} \text{ with } \sigma = \frac{ne^2 \tau}{m}$ $\tau = \frac{\ell}{v}$; T-dependence through properties of τ or ℓ . Classical mean free paths $\ell = \tau v_{gas} \approx 10A$ seemed reasonable to Drude.

3. Semiclassical Theory

Quantum (Fermi) mean free path $\ell = \tau v_{Fermi} \approx 1000A$ at room T - remarkably long. Observed experimentally. ℓ can be very long at low T. What about uncertainty principle in using a classical description? Valid only for $\ell p_f > \hbar/2$.

4. Thermal conductivity.

 $\mathbf{j}_Q = -\kappa \nabla T$ with $\kappa = \frac{1}{3}v^2 \tau c_V$ Experimental Wiedemann-Franz law $\frac{\kappa}{\sigma T} = \text{constant} = \text{Lorentz number}$. Drude gives $\frac{\kappa}{\sigma T} = \frac{3}{2} (\frac{k_B}{e^2})^2$ with fortuitous quantitative agreement. Classical $c_V = \frac{3}{2}k_B$ becomes Quantum $c_V \propto T$ (100 times smaller). Classical $\frac{1}{2}mv^2 = \frac{3}{2}k_BT$ becomes Quantum $\frac{1}{2}mv^2 = E_F$ (100 times larger). Semiclassical theory gives $\frac{\kappa}{\sigma T} = \frac{\pi^2}{3} (\frac{k_B}{e^2})^2$ with even better agreement.

5. Thermopower and Seebeck Effect – Discuss briefly Must have electric field to prevent current flow in presence of temperature gradient. $E = Q\nabla T, Q = -\frac{1}{3ne}c_V$

489 S 04 Lecture 3

- 6. Dynamical response: $\frac{d\mathbf{p}}{dt} = \mathbf{f} \frac{\mathbf{p}}{\tau}$ AC conductivity: $\sigma(\omega) = \sigma_0 \frac{1}{1 - i\omega\tau}$ with $\sigma_0 = \frac{ne^2\tau}{m}$.
- 7. Optical Properties response in electromagnetic field. Dielectric function $\epsilon(\omega) = 1 + 4\pi i \sigma(\omega) = n(\omega)^2$, where *n* is the refractive index. Wave velocity $= \frac{\omega}{k} = \frac{c}{n(\omega)}$ Examples:
 - When $\omega \tau \ll 1$, $\sigma(\omega)$ is mainly real $[\frac{1}{\tau} \approx 10^{13} Hz]$. Imaginary part of ϵ gives absorption; large at low ω . Real part of *n* gives wave velocity.
 - When $\omega \tau >> 1$, $\sigma(\omega)$ is mainly imaginary $\epsilon(\omega) = 1 - (\frac{\omega_P}{\omega})^2$ is real, with ω_P = plasma frequency When $\omega < \omega_P$, *n* is imaginary, reflectivity = 1, metal is opaque and shiny. When $\omega > \omega_P$, *n* is real and the metal becomes transparent (in ultraviolet). When $\omega = \omega_P$, plasma oscillation occurs.
- 8. Hall effect.

Must have electric field to prevent transverse current flow in presence of magnetic field.

 $E_y = R_H H_z j_x$ with $R_H = \frac{-1}{nec}$

Depends on density and sign of charges only.

- 9. Major failures of free, independent electron theory (Ashcroft and Mermin, chapt. 3)
 - Solid have an enormous range of behaviors:
 - Some solids are insulators; Conductivity = 0 at T=0); No linear T term in specific heat
 - Semiconductors
 - Sometimes hall constant of real metals sometimes have opposite sign.
 - Magnetism, superconductivity,