Physics 489 S 04 Lecture 4
 Crystal Lattices and Classification (Ashcroft and Mermin, chapter 4) Also information from chapter 7

1. A Crystal is an ordered state of matter

Qualitatively different from liquids/gases
Change from liquid to crystal is a true phase transition
Paradigm for other ordered states (like magnetism)
2. Crystal $=$ Lattice $*$ Basis (convolution)

Lattice defines the laws of repetition - set of ideal points
Basis is the contents of each unit or cell:, real atoms or electron density etc.
Translational symmetry defines the lattice.
Point symmetry is the symmetry of the basis - rotation, reflection, inversion
Crystal symmetry (Space group) combines translation and point symmetries - distinguishes one crystal system from another.
1-D and 2-D examples
3. Bravais Lattice (1845)

14 possible ways to make (3D) space translationally invariant.
Elements of the translation group.
Infinite array of discrete points in space: crystal appears exactly the same if translated by the vector to any of the points
(a) $1 \mathrm{D}: R=n_{1} a_{1}$
(b) 2D $R=n_{1} a_{1}+n_{2} a_{2}$ with a_{1}, a_{2} non-colinear
(b) 3D: $R=n_{1} a_{1}+n_{2} a_{2}+n_{3} a_{3}$ with a_{1}, a_{2}, a_{3} non-coplanar.
4. Primitive unit cell.

Volume of space which, when translated by all possible R's, fills space completely with no overlap. Not unique choice.
In 3D: Cell volume $=a_{1} \cdot\left(a_{2} \times a_{3}\right)$.
Wigner-Seitz cell - most compact cell - unique
5. Close-packing of spheres.

One way (triangular lattice) in 2D
Infinite number of ways to stack in 3d.
Simplest are HCP (2 layers AB) and FCC (3 layers ABC).
FCC is a Bravais lattice
HCP is not a Bravais lattice, but hexagonal lattice with 2 atom basis.
6. Crystal structures of elements.

```
SC Po
FCC Xe, Kr..., Al, Cu, Ni, Ca, Ag, Au, Pt, Pb.
BCC Na, K..., Fe, Cr, Cr, Mo, W, Nb
HCP Be, Cd, Mg, Er, Gd, Ho...
ABAC La
```

7. Important lattices with basis
$\mathrm{CsCl}, \mathrm{NaCl}$, Diamond, Zincblende (ZnS) and Graphite.
Materials of recent interest:
High Temperature Superconductors, e.g., $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$
Another superconductor discovered recently, MgB_{2}
8. Finite number of possible crystal classes

Example of 2-D Bravais lattices - 5 possible types
Proof in 2-D that only $60,90,120,180$ degree rotations are possible - e.g., 5 -fold rotations impossible in a crystal
9. Enumeration of 14 Bravais lattices in 3-D. (See Chapt 7)

Cubic (3) simple (SC), body-centered (BCC) and face-centered (FCC).
Tetragonal (2) simple and centered.
Orthorhombic (4) simple, body-centered, base-centered and face-centered.
Monoclinic (2) simple and centered.
Triclinic (1)
Rhombohedral or trigonal (1)
Hexagonal (1).

