489 S 04 Lecture 5

Physics 489 S 04 Lecture 5 The Reciprocal Lattice (Ashcroft and Mermin, chapter 5)

1. Fourier Series for periodic function:

For any property of a periodic system:

If
$$f(x + T_n) = f(x)$$
 for all translations $T_n = na$, $n = integer$,

then

$$f(x) = \sum_{G} f_{G}e^{iGx}$$
, where $G = integer \times 2\pi/a$.

Extends to any dimension:

$$f(\mathbf{r}) = \sum_{m_1, m_2, m_3} f(\mathbf{G}_{m_1, m_2, m_3}) e^{i\mathbf{G}_{m_1, m_2, m_3} \cdot \mathbf{r}}, \text{ or } f(\mathbf{r}) = \sum_{\mathbf{G}} f(\mathbf{G}) e^{i\mathbf{G} \cdot \mathbf{r}},$$

2. Definition of Reciprocal Lattice

a. Bravais lattice of points in reciprocal space (k-space or G-space):

$$\mathbf{G}_{m_1,m_2,m_3} = m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2 + m_3 \mathbf{b}_3$$

b. Expressions for primitive vectors \mathbf{b}_i :

$$\mathbf{b}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij}$$

Explicit forms in 1,2,3 dimensions

c. Volume of primitive cell of reciprocal lattice = $(2\pi)^3/\Omega$, where |omega| = volume of primitive cell of real lattice.

3. Examples:

Real lattice	Reciprocal lattice
simple cubic	simple cubic
fcc	bcc
bcc	fcc
tetragonal $(a_3 > a_1 , a_2)$	tetragonal $(b_3 < b_1 , b_2)$
simple hexagonal	simple hexagonal (rotated)

4. Brillouin Zones:

First Brillouin Zone (BZ) = Wigner-Seitz cell of Reciprocal lattice

5. Lattice planes:

Miller indices: (h,k,l) denotes family of planes; $\{h,k,l\}$ denotes set of equivalent (h,k,l) One-one correspondence: family of planes (h,k,l) to a reciprocal lattice vector \mathbf{G} that is the shortest \mathbf{G} -vector orthogonal to the planes

Easier to use planes in some cases, e.g., to describe a plane of atoms that forms a surface

In general, much easier to use reciprocal lattice to describe properties of periodic crystals