Physics 489 S 04 Lecture 6 Determination of Crystal Structures (Ashcroft and Mermin, chapter 6)

1. Experiments probe matter by scattering of waves

Waves useful for scattering from crystals: X-rays, neutrons, high-energy electrons

- Must penetrate into the solids to be sensitive to the structure
- Neutrons penetrate very well (except for a few elements) low energy thermal neutrons have wavelength $\lambda \approx$ atomic spacing
- X-rays penetrate fairly well the absorption causes some problems in analysis, but we will ignore absorption kilovolt X-rays have wavelength $\lambda \approx$ atomic spacing now tunable sources at synchrotrons
- High-energy electrons (kilovolts) penetrate but experiments and analysis are difficult due to losses- will not be dealt with explicitly here
- 2. Bragg scattering: elastic scattering no loss of energy scattered wave has same energy (wavelength) as incident wave: Analysis as scattering from planes spaced by distance d: Well known formula: $n\lambda = 2d\sin(\theta)$
- 3. More useful expression in general cases: Conservation of "crystal momentum": $\mathbf{k}_i - \mathbf{k}_s = \mathbf{G}$, where \mathbf{G} is a reciprocal lattice vector
- 4. Elastic scattering: $E_i = E_s$; $|\mathbf{k}_i| = |\mathbf{k}_s|$
 - Ewald construction orientation of crystal to satisfy $\mathbf{k}_i \mathbf{k}_s = \mathbf{G}$
 - Bragg law where 2θ is scattering angle: $2d\sin(\theta) = n\lambda$ or $\sin(\theta) = \frac{\lambda}{4\pi} |\mathbf{G}|$
 - Leads to characteristic ratios of $sin(\theta_n)$ for each Bravais lattice, where n denotes different scattering angles
- 5. Experimental methods
 - Rotating crystal
 - Powder pattern (Debye-Scherrer)
 - Energy range for probe waves (Laue)
 - Tunable energy for probe waves Now widely used at synchrotrons
- 6. Bragg planes and Brillouin Zones
 - Another way to formulate Bragg law: $2\mathbf{k} \cdot \mathbf{G} = |\mathbf{G}|^2$, where \mathbf{k} is either \mathbf{k}_i or \mathbf{k}_s
 - Leads to scattering only for \mathbf{k} on Bragg planes defined as bisectors of \mathbf{G} vectors
 - Volumes enclosed by Bragg planes are Brillouin Zones

- First Brillouin Zone is smallest volume enclosed by Bragg planes
- 7. First Brillouin Zone (BZ) = Wigner-Seitz cell of Reciprocal lattice
 - No Bragg scattering occurs for any **k** inside first Brillouin Zone (BZ)
 - Bragg scattering occurs for \mathbf{k} on surface of BZ
 - Examples of BZ: simple cubic, fcc, bcc
- 8. Form factors and structure factors
 - Scattering amplitude of a single atom is given by the form factor $f(|\mathbf{k}_i \mathbf{k}_s|)$ where f depends upon the type of scattering probe
 - Scattering amplitude for a solid is the coherent scattering from all the atoms, j = 1, ..., j = 1,

 $\sum_{j} f_{j}(\mathbf{k}_{i} - \mathbf{k}_{s}) e^{i(\mathbf{k}_{i} - \mathbf{k}_{s}) \cdot \mathbf{R}_{j}}$

• For a crystal scattering is non-zero only for $\mathbf{k}_i - \mathbf{k}_s = \mathbf{G}$ and the scattering amplitude is given by N_{cells} times the scattering per cell $\sum_j f_j(\mathbf{G}) e^{i(\mathbf{k}_i - \mathbf{k}_s) \cdot \mathbf{R}_j}$,

where the sum is over all the atoms in a primitive cell

- Approximate correct to treat scattering from each atom in the solid as spherically symmetric, i.e., $f_j(\mathbf{G}) = f_j(|\mathbf{G}|)$ and the same for all atoms of the same chemical species
- Then the scattering for all atoms of the same type can be written as the form factor $f_j(|\mathbf{G}|)$ multiplied by a geometrical structure factor $S(\mathbf{G})$: $S(\mathbf{G}) = \sum_j e^{i\mathbf{G}\cdot\mathbf{R}_j},$

where the sum is over atoms of the same type

- Example: diamond structure
- 9. Phase problem:
 - In general scattering experiments only measure intensities $\propto |amplitude|^2$
 - Nobel prize in chemistry in 1988 for method to determine three-dimensional structure of complex crystals such as proteins
 - If the phase can be measured, amplitudes can be determined, and the structure in real space can be determined by inverse Fourier transform of the scattering amplitude in Fourier space
 - Current research to find ways to measure the phases