Physics 489 S 04 Lecture 8 Lattice Vibrations I (Ashcroft and Mermin, chapter 21, 22)

- 1. Failure of the Static Lattice Model. Vibrations of nuclei needed to explain:
 - i) Specific heat, thermal expansion, melting
 - ii) Lattice contribution to thermal conductivity
 - iii) Scattering of electrons: origin of electronic relaxation; resistivity
 - iv) Sound waves
 - v) Scattering of light, x-rays, neutrons, ...

vi) Quantum effects: Specific heat at low T not given by classical equipartition; zero point motion; superconductivity.

2. Adiabatic (Born-Oppenheimer) approximation.

Electrons follow the nuclei instantaneously

Electrons always in their ground state which is a function of nuclear positions Energy of system = function of coordinates of nuclei, $E({\mathbf{R}_i})$

3. Harmonic approximation.

Define nuclear coordinates $\mathbf{R}_i = \mathbf{R}_i^0 + \mathbf{u}_i$, \mathbf{u}_i is displacement from equilibrium Harmonic approximation - energy expanded to second order in the \mathbf{u}_i Breaks down for high temperature (near melting), near certain phase transitions (where the lattice is very soft), and in 'quantum' solids (H and He).

- 4. General Expansion: $E = E_0 + 1/2 \sum_{ij} \mathbf{u}_i D_{ij} \mathbf{u}_j$, where $D_{ij} = d^2 E/d \mathbf{u}_i d \mathbf{u}_j$ For a crystal D_{ij} is function only of the relative positions of the cell of atom i and atom j
- 5. Pair Approximation: $E = 1/2 \sum_{ij} \phi(|\mathbf{R}_i \mathbf{R}_j|)$ Convenient form - accurate for rare gases, ionic crystals, some metals
- 6. One dimensional chain: Positions of atoms R_n⁰ = na. Nuclei of mass M, connected by springs of force constant K. Displacements must obey the relation u_n(t) = exp(ikna - iωt) (easier than sin or cos functions) Dispersion relation (ω(k))² = 2(K/M)[1 - cos(ka)] or ω(k) = 2(K/M)^{1/2} sin(ka/2) Describes the "Normal modes", independent modes of vibration of the crystal Vibrations at one wavevector k independent of vibrations at other k' Allowed values of k = (2π/a)(m/N); -π/a < k < π/a (First Brillouin Zone). Velocity of sound v_s = lim/(k→0) dω/dk = a(K/M)^{1/2} Group velocity v_{group} = dω/dk goes to zero at BZ boundary.
- 7. One dimensional chain with basis.

2 atoms per cell: 2x2 determinant; 2 dispersion curves $\omega_m(k)$; acoustic, optic For S atoms per cell: S dispersion curves; 1 acoustic; S-1 optic

8. Counting of modes

N nuclei in a ring: N degrees of freedom give N normal modes. $k = (2\pi/a)(M/N); (1/L) \sum_k \rightarrow (1/2\pi) \int_{BZ} dk$

489 S 04 Lecture 8

9. Typical magnitudes: $K \approx E_{coh}/(bondlength)^2$; $\omega \approx 10^{13} rad/sec$; $v_{sound} \approx 10^5 cm/sec$