Physics 489 S 04 Lecture 8
Lattice Vibrations I (Ashcroft and Mermin, chapter 21, 22)

1. Failure of the Static Lattice Model. Vibrations of nuclei needed to explain:
i) Specific heat, thermal expansion, melting
ii) Lattice contribution to thermal conductivity
iii) Scattering of electrons: origin of electronic relaxation; resistivity
iv) Sound waves
v) Scattering of light, x-rays, neutrons, ...
vi) Quantum effects: Specific heat at low T not given by classical equipartition; zero point motion; superconductivity.
2. Adiabatic (Born-Oppenheimer) approximation.

Electrons follow the nuclei instantaneously
Electrons always in their ground state which is a function of nuclear positions
Energy of system $=$ function of coordinates of nuclei, $E\left(\left\{\mathbf{R}_{i}\right\}\right)$
3. Harmonic approximation.

Define nuclear coordinates $\mathbf{R}_{i}=\mathbf{R}_{i}^{0}+\mathbf{u}_{i}, \mathbf{u}_{i}$ is displacement from equilibrium
Harmonic approximation - energy expanded to second order in the \mathbf{u}_{i}
Breaks down for high temperature (near melting), near certain phase transitions (where the lattice is very soft), and in 'quantum' solids (H and He).
4. General Expansion: $E=E_{0}+1 / 2 \sum_{i j} \mathbf{u}_{i} D_{i j} \mathbf{u}_{j}$, where $D_{i j}=d^{2} E / d \mathbf{u}_{i} d \mathbf{u}_{j}$

For a crystal $D_{i j}$ is function only of the relative positions of the cell of atom i and atom j
5. Pair Approximation: $E=1 / 2 \sum_{i j} \phi\left(\left|\mathbf{R}_{i}-\mathbf{R}_{j}\right|\right)$

Convenient form - accurate for rare gases, ionic crystals, some metals
6. One dimensional chain: Positions of atoms $R_{n}^{0}=n a$.

Nuclei of mass M, connected by springs of force constant K.
Displacements must obey the relation $u_{n}(t)=\exp (i k n a-i \omega t)$ (easier than sin or cos functions)
Dispersion relation $(\omega(k))^{2}=2(K / M)[1-\cos (k a)]$ or $\omega(k)=2(K / M)^{1 / 2} \sin (k a / 2)$
Describes the "Normal modes", independent modes of vibration of the crystal
Vibrations at one wavevector k independent of vibrations at other k^{\prime}
Allowed values of $k=(2 \pi / a)(m / N) ;-\pi / a<k<\pi / a$ (First Brillouin Zone).
Velocity of sound $v_{s}=\frac{\lim }{k \rightarrow 0} d \omega / d k=a(K / M)^{1 / 2}$
Group velocity $v_{\text {group }}=d \omega / d k$ goes to zero at BZ boundary.
7. One dimensional chain with basis.

2 atoms per cell: 2 x 2 determinant; 2 dispersion curves $\omega_{m}(k)$; acoustic, optic
For S atoms per cell: S dispersion curves; 1 acoustic; S -1 optic
8. Counting of modes

N nuclei in a ring: N degrees of freedom give N normal modes.
$k=(2 \pi / a)(M / N) ;(1 / L) \sum_{k} \rightarrow(1 / 2 \pi) \int_{B Z} d k$
9. Typical magnitudes:
$K \approx E_{\text {coh }} /(\text { bondlength })^{2} ; \omega \approx 10^{13} \mathrm{rad} / \mathrm{sec} ; v_{\text {sound }} \approx 10^{5} \mathrm{~cm} / \mathrm{sec}$

