Physics 489 S 04 Lecture 9
Lattice Vibrations II (Ashcroft and Merminchapter 21, 22)

1. Generalization to $\mathrm{D}=2$ and 3 dimensions.

Normal modes described by wavevector \mathbf{k} in one primitive cell of reciprocal lattice Convenient choice: Brillouin Zone
2. Counting of modes

Number of allowed k values $=$ number of unit cells in crystal
Density of allowed values of \mathbf{k} is $(L / 2 \pi)^{D}$
Thus $(1 / V) \sum_{\mathbf{k}} \rightarrow(1 / 2 \pi)^{D} \int_{B Z} d^{D} k$, exactly the same as for electrons described in Lecture 2
3. Types of motion

Motions in $\mathrm{D}=2$ or 3 directions: Longitudinal, transverse motions
For S atoms per cell: $\mathrm{D} \times \mathrm{S}$ dispersion curves; D acoustic; $\mathrm{D}(\mathrm{S}-1)$ optic
4. $\mathrm{D}=1,2$, or 3 dimensions - one atom per cell

Define displacements $u_{\mu}\left(\mathbf{R}_{i}^{0}\right)$, where \mathbf{R}_{i}^{0} is the position of the atom in cell i and $\mu=$ vector direction ($\mu=1,2,3$ if $\mathrm{D}=3$)
$E_{t o t}=E_{0}+1 / 2 \sum u_{\mu}\left(\mathbf{R}_{i}^{0}\right) D_{\mu, \nu}\left(\mathbf{R}_{i}^{0}-\mathbf{R}_{j}^{0}\right) u_{\nu}\left(\mathbf{R}_{j}^{0}\right)$, where $D_{\mu, \nu}\left(\mathbf{R}_{i}^{0}-\mathbf{R}_{j}^{0}\right)=d^{2} E_{t o t} / d u_{\mu}\left(\mathbf{R}_{i}^{0}\right) d u_{\nu}\left(\mathbf{R}_{j}^{0}\right)$
Note: $D_{\mu, \nu}\left(\mathbf{R}_{i}^{0}-\mathbf{R}_{j}^{0}\right)=D_{\mu, \nu}\left(\mathbf{R}_{j}^{0}-\mathbf{R}_{i}^{0}\right)$
and $\sum_{i} D_{\mu, \nu}\left(\mathbf{R}_{i}^{0}\right)=0$ ("translation invariance")
5. Equation of motion for 1 atom per cell in 3 dimensions.
$u_{\mu}\left(\mathbf{R}_{i}^{0}\right)=e_{\mu} \exp \left(i \mathbf{k} \cdot \mathbf{R}_{i}^{0}-i \omega t\right)$, general form of solution.
$M \omega^{2} e_{\mu}=D_{\mu, \nu}(\mathbf{k}) e_{\nu}$ is the eigenvalue equation.
$D_{\mu, \nu}(\mathbf{k})=\sum_{i} D_{\mu, \nu}\left(\mathbf{R}_{i}^{0}\right) \exp \left(i \mathbf{k} \cdot \mathbf{R}_{i}^{0}\right)$ is Fourier transform.
Using symmetry and $\sum_{i} D_{\mu, \nu}\left(\mathbf{R}_{i}^{0}\right)=0$, it follows that
$D_{\mu, \nu}(\mathbf{k})=-2 \sum_{i} D_{\mu, \nu}\left(\mathbf{R}_{i}^{0}\right) \sin ^{2}\left(\mathbf{k} \cdot \mathbf{R}_{i}^{0} / 2\right)$
Real symmetric matrix has 3 real eigenvalues, $\lambda_{s}(\mathbf{k})$, and eigenvectors, $e_{s}(\mathbf{k})$.
Eigenvalues give dispersion relation: $\omega_{s}=\left(\lambda_{s}(\mathbf{k}) / M\right)^{1 / 2}$
Eigenvectors give polarization of mode, longitudinal or transverse.
6. Example: Dispersion curves for Pb . See A\&M page 441.

Modes of a 2D triangular lattice.
7. Speed of sound derived from matrix of force constants.

When $k \ll \pi / a$ can approximate $\sin (k R / 2) \rightarrow k R / 2$
Leads to $\omega=v_{\text {sound }} k$ for one longitudinal and D-1 transverse sound waves.
8. Relation to elasticity theory
$\mathbf{u}\left(\mathbf{R}_{j}\right)=\mathbf{u}\left(\mathbf{R}_{i}\right)+\left(\mathbf{R}_{j}-\mathbf{R}_{i}\right) \cdot \frac{\partial \mathbf{u}}{\partial \mathbf{R}}$, where $\frac{\partial \mathbf{u}}{\partial \mathbf{R}}$ is the strain tensor
$E_{\sigma \mu \tau \nu}=-1 / 2 \sum_{\mathbf{R}} \mathbf{R}_{\sigma} D_{\mu, \nu}(\mathbf{R}) \mathbf{R}_{\tau}$, 4th rank elasticity tensor.
Rewrite as $C_{\sigma \mu \tau \nu}$ for conventional elasticity tensor.
$\{\sigma \mu\}=\{x x, y y, z z, x y, y z, z x\} \rightarrow\{1,2,3,4,5,6\}$
General crystal has 21 independent elements of tensor
Cubic crystal has 3 independent elements: C_{11}, C_{12}, C_{44}

