489 S 04 Lecture 10

$\begin{array}{c} Physics~489~S~04~Lecture~10\\ Quantized~Lattice~Vibrations,~Thermal~Properties~(A~\&~M~chapter~23) \end{array}$

1. Review of classical theory:

Within harmonic approximation, the exact solution of lattice vibrations is a set of independent harmonic oscillators, labelled by wavevector \mathbf{k}

1

For each **k** there are s = D * S modes (D = dimension; S = # atoms per cell) with frequency $\omega_s(\mathbf{k})$

There are D acoustic modes with $\omega \to 0$ as $\mathbf{k} \to 0$

- 2. Quantum Theory (Using results stated in Review of Statistics, Lecture 1) Each oscillator of frequency ω has quantized energies $E_n = (n+1/2)\hbar\omega$ Quantum particles (phonons) obeying Bose statistics Average occupation: Planck distribution, $\langle n \rangle = (e^{\beta\hbar\omega} 1)^{-1}$, $\beta = 1/k_BT$ Total energy density: $(1/V)E_{tot} = (1/V)\sum_{s,\mathbf{k}}\hbar\omega_s(\mathbf{k})\left(\langle n_s(\mathbf{k}) \rangle + \frac{1}{2}\right)$
- 3. Specific Heat $C_V = (1/V)dE_{tot}/dT = (1/V)\sum_{s,\mathbf{k}}\hbar\omega_s(\mathbf{k})\frac{d< n_s(\mathbf{k})>}{dT}$ For $k_BT >> \hbar\omega$, $< n>= k_BT/\hbar\omega$, and C_V approaches the classical value Dk_B per nucleus, D= dimension For low T only vibrations with $\omega_s(\mathbf{k})$ of order k_BT contribute to C_V For sufficiently low T in all solids, only acoustic modes with $\omega=v_{sound}k$ contribute and $C_V \propto T^D$, where D= dimension
- 4. Debye model (correct for acoustic modes, qualitatively correct for other modes) Approximate all frequencies by $\omega = v_{sound}k$, $v_{sound} = \text{spherical average}$ $k_{max} = k_D$ defined to sum to the right number of modes In 3 dimensions, k is in a sphere with volume $(4\pi/3)k_D^3 = (2\pi)^3/V_{atom}$ Debye Temperature Θ_D defined by $k_B\Theta_D = \omega_{max} = v_{sound}k_D$ At low T, $C_V = 3(N/V)k_B(4\pi^4/5)(T/\Theta_D)^3$ (in 3D) Can consider C_V at low T to define Θ_D for a given material
- 5. Einstein Model: $\omega_s(\mathbf{k})$ modelled as constant ω_s independent of k (Appropriate for optic modes only) Gives $C_V \propto exp(-\beta\hbar\omega_s)$ for low T
- 6. Typical magnitudes
 Phonon energy $\hbar\omega = 0$ to a maximum value of $\approx 10^{-2}$ to $\approx 10^{-1}$ eV
 Debye energy $-\approx 10^{-2}$ to $\approx 10^{-1}$ eV, Debye Temperature $-\approx 100$ to ≈ 1000 K
- 7. Density of states = number of states per unit energy per unit volume Determines all quantities that depend only on energy, e.g., C_V $g(\omega) = (1/V) \sum_{s,\mathbf{k}} \delta(\omega \omega_{s,\mathbf{k}})$ For vibrations at low ω , $g(\omega) \propto \omega^{D-1}$, where D is the dimension.

2

Figure 1: Phonon dispersion and density of states in 1 and 3 dimensions

Figure 2: Debye approximation to the dispersion and density of states in 3 dimensions. Typical specific heat which is reasonably approximated by Debye model.

