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Physics 489 S 04 Lecture 12
Independent Electrons in Crystals: General Theory (A&M chapter 8)

1. Review of Course up to now

(a) Electron Liquid in Condensed Matter; Homogeneous “Jellium”; Drude theory
for transport

(b) Structure of crystals: Periodicity, Elastic scattering

(c) Vibrations of nuclei in crystals; Dispersion curves; quantization; heat capacity;
transport

2. Part IV: Electrons in Crystals: Independent Electrons
Schrödinger Eq. Hψ(r) = (−1

2∇2 + V (r)ψ(r) = εψ(r)
Key point: V (r + R) = V (r) for any lattice translation vector R.

3. Bloch Theorem (first proof, A&M p 134)
Define the translation operator: TRf(r) = f(r + R)
Since TR commutes with H, we can construct simultaneous eigenfunctions of H and
all the TR.
Simple to construct eigenstates of TR, since TR1+R2 = TR1TR2

Thus if R = n1a1 + n2a2 + n3a3, then TR = (Ta1)
n1(Ta2)

n2(Ta3)
n3

Eigenfunctions vary from one cell to another only by a phase: ψk(r + R) = exp(ik ·
R)ψk(r)

4. Eigenstates of H can be chosen as ψk,n(r), with eigenvalues εk,n, n = 1, 2, 3, ...
Equivalently, ψk,n(r) = exp(ik · r)uk,n(r), where uk,n(r) is periodic.
All possible ψk,n(r) can be constructed in the way with k restricted to one primitive
cell of reciprocal lattice
For k outside the primitive cell, we can choose ψk+G(r) = ψk(r).

5. Boundary condition: Born-von Karman condition gives k real with k = (m1/N1)b1 +
(m2/N2)b2 + (m3/N3)b3

6. Construction of eigenstates (second proof of Bloch theorem).
Starting with the definition ψk,n(r) = exp(ik · r)uk,n(r), expand u(r) in Fourier com-
ponents.
It is straightforward to express the Schrödinger equation in Fourier components.
Leads to separate matrix equation for the Hamiltonian for each k, independent of
other k inside one primitive cell.
The solution is that u is a periodic function uk,n(r) =

∑
G uk,n(G)exp(iG · r), which

proves the Bloch theorem and provides and explicit way to solve for the eigenvalues
εk,n and eigenfunctions ψk,n(r).

7. Bands
For each integer n, the eigenvalue εk,n is a continuous function of k which forms a
“band” of allowed energies.
Between bands there can be ranges on energies where no states are allowed. These
are called “band gaps”.
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Figure 1: Electron bands and density of states in 1 dimension and 3 dimensions. In 3
dimensions there may be overlapping bands but this is not shown for simplicity.
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( Only 2 bands
shown for simplicity)

8. Band counting
Each band has exactly one k state per cell
If we assume that the electrons in the crystal are independent - except that they must
obey the Pauli exclusion principle - then each k state can hold 1 electron of each spin
Then each band can hold 1 electron of each spin per cell.
There is an infinite number of bands, n = 1, 2, 3, ...,∞
(unlike phonons for which there are 3S bands for S atoms per cell in three dimensions.)
The lowest energy state of the crystal is for the electrons to fill the lowest energy states
up to the Fermi energy leaving all states above the Fermi energy empty.
Leads to the basic description of metals and insulators - MORE LATER.

9. Density of states
g(ε) = (1/2π)D

∫
dDkδ(εn(k)− ε)

The ideas are the same as for the eigenvalues ω2
k,n for phonons. Note that electron

bands have quadratic variation near the edges of the band, εk,n = ε0n +Axk2
x +Ayk

2
y +

Azk
2
z).


