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Physics 489 S 04 Lecture 13
Nearly-Free Electrons in Crystals (A&M chapter 9)

1. Key point of course - recall from last lecture
Electronic bands εn(k) are the allowed states for a single particle (an electron) in a
periodic potential.
See figure below for examples of BZ’s for well-known crystals
The starting point (and often an excellent approximate description) for understanding
many electrons in crystals is to treat the electrons as non-interacting particles that
obey the Pauli exclusion principle.

2. The simplest band structure - Free Electron bands
Derived entirely from a change of variables q = k + G, where q is any vector in
reciprocal space, and k is defined to be in the BZ, with G a reciprocal lattice vector.
This has the effect of ‘translating’ free electron states with energy ε(q) into the first
Brillouin Zone (BZ), and defining the energy ε(k + G) as a function of k.

Simple in 1 D
2D and 3D cases have degenerate points where bands cross.

3. Fourier analysis for ”empty lattice” where V(G) = 0
Free electron bands

4. Nearly Free Electron bands:
For weak potentials, i.e., small V(G): Use perturbation theory
Small changes in free electron bands, except at points where degenerate states are
mixed
At BZ boundaries, opens gaps, creates standing waves
Equivalent to Bragg scattering condition.
(This shows why BZ is more useful than other primitive cells)

5. 1D cases: opens gaps in the density of states
Periodic in extended zones

6. Now consider many non-interacting electrons in the crystal
Electrons fill lowest states up to the Fermi energy
Simple counting leads to filled or partially-filled bands

7. 2D and 3D cases: Fermi surfaces in k-space
Example of 2D square lattice
For 1 electron per primitive cell, FS in first band inside BZ.
For 2 electrons per primitive cell, FS crosses zone boundary into 2nd band.

8. Extended Zone Scheme: 1st, 2nd BZ, etc.

9. Examples: Na(bcc), Al (fcc), Ge (diamond)
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Figure 1: Brillouin zones for several common lattices: a) simple cubic (sc), b) face centered
cubic (fcc), c) body centered cubic (bcc) and d) hexagonal (hex). (High symmetry points
and lines are labelled according to Bouckaret, Smoluchowski, and Wigner.) The zone center
(k = 0) is designated Γ and interior lines by Greek letters, points on the zone boundary by
Roman letters. In the case of the fcc lattice, a portion of a neighboring cell is represented
by dotted lines. This shows the orientation of neighboring cells that provides useful infor-
mation, for example, that the line Σ from Γ to K continues to a point outside the first BZ
that is equivalent to X. This line is shown for examples such as the bands for Al and GaAs.
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Figure 2: Free electron bands in an fcc crystal plotted as a function of wavevector k in the
BZ.
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Figure 3: Electron bands in fcc Al compared to free electron bands (dashed lines) as calcu-
lated Segall
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Figure 4: Free electron bands in GaAs which has the zinc blende structure, fcc with 2
atoms per primitive cell. The bands are plotted as a function of wavevector k in the BZ
and compared with experimental date (from T. C. Chiang of UIUC). (The BZ is exactly the
same as for any fcc crystal - only the scale 2π/a depends on the crystal which has lattice
constant a.) GaAs is a semiconductor beacuse the lowest four bands are full and separated
by a gap from the empty bands - more later.


