Physics 489 S 04 Lecture 17 Density Functional Theory Notes on WWW pages as a pdf file; also related to A & M Chpt. 17

- 1. The many-body electron problem
- 2. Hohenberg-Kohn Theorems
 - (a) The ground state density $n(\mathbf{r})$ determines *all* properties of the many-body system of electrons
 - (b) There exists (in principle!) a functional $F[n(\mathbf{r})]$ which when minimized determines the exact ground state energy and density
- 3. Kohn-Sham Ansatz
 - (a) Replace the interacting electron problem with a non-interacting problem with the same density $n(\mathbf{r})$
 - (b) Can use independent particle methods to solve for $n(\mathbf{r})$
 - (c) Solution of Schrödinger Eq. for *independent* electrons moving in a potential $V_{eff}(\mathbf{r})$, which is a functional of $n(\mathbf{r})$
 - (d) Same approach as the "Hartree" methods, A & M Chpt. 17
- 4. Functionals for Exchange and Correlation
 - (a) Must be derived from some many-body calculation
 - (b) LDA Local Density Approximation
 - i. Widely used assumption that the exchange and correlation energy at a point \mathbf{r} is the same as in a homogeneous electron gas of density $n(\mathbf{r})$
 - ii. Best calculations are those of Ceperley and Alder using Quantum Monte Carlo Methods
 - iii. With that assumption, one can solve the independent particle Kohn-Sham equations to essentially arbitrary accuracy!
 - (c) GGA Generalized Gradient Approximations The success of these approximations has led to the wide spread use of DFT in chemistry
- 5. Solution of the Kohn-Sham "Schrödinger-like" Equations
 - (a) Results: H, He, H_2
 - (b) Results: Atomic examples
 - (c) Results: Solids
 - (d) Results: Molecules: GGA
 - (e) Failures!