Physics 489 S 04 Lecture 27

Superconductivity – Aschroft and Mermin, Ch. 34; Kittel Ch. 12

Good Other text: P. deGennes, Superconductivity of Metals and Alloys (now in reprinted hardback - not expensive!)

1. Experimental Survey. For $T < T_c$:

Resistance R=0 at a *finite* temperature (K. Onnes, 1911) Linear specific heat becomes exponential \rightarrow gap in the density of states Magnetism is *excluded* from superconductor - Meisner Effect (1934) Magnetic fields destroy superconductivity above a critical value Isotope effect \rightarrow something to do with phonons

2. Phase Transition -A different state of matter

Shown most clearly by experimental properties in magnetic field Superconductivity destroyed by applied magnetic field $H > H_c$ Phase boundary separates "normal" and "superconducting" phases

Superconductivity vanishes for temperature $T > T_c$ Therefore, there *must* be an order parameter that describes the superconducting phase

3. Magnetic Effects

Meissner Effect: complete exclusion of H field in Type I superconductors Superconducting state exists only for $H < H_{c1}(T)$

Vortex State for Type II superconductors

Exists for $H_{c1}(T) < H < H_{c2}(T)$

4. Sketch of ideas involved in Cooper pairs (1956), BCS theory (1957)

Any attractive interaction between electrons causes Fermi surface to be unstable to formation of Cooper pairs

Phonons provide a mechanism

BCS theory: All electrons in the *same* pair state (like condensed bosons)

BCS is a mean field theory, which described superconductors in great detail; e.g.

the relation between the gap Δ and transition temperature T_c : $\Delta/k_BT_c = 1.76$

The condensed state is the new state of matter

The order parameter is the condensate wavefunction (two components since a wavefunction is complex)

The order parameter is non-zero only for $T < T_c$, $H < H_c(T)$ Maximum T_c before 1987: $\approx 30K$

5. Landau-Ginsberg Theory (1950, preceded BCS)

Proposed Order Parameter - $\Psi(r) = (n_s)^{1/2} exp(i\phi(r))$

 $\Psi(r)$ obeys Shrödinger-like Eq. (later justified by BCS which shows $\Psi(r)$ is wavefunction describing center of mass $(r_1 + r_2)$ motion of pair)

Variation of phase $\phi(r)$ describes current - just like ordinary Schr. Eq. but for pair states of charge -2e

Just like other solutions of the Schr. Eq., $\phi(r)$ must be single valued - boundary conditions lead to quantization over macroscopic distances

Leads to London Eq., Meissner Effect, flux quantization, etc.

6. Macroscopic Quantum Effects – Manifestations of the coherence of a single wavefunction over the entire superconductor

Flux Quantization; Persistent Currents; Josephson Effect

489 S 04 Lecture 27

7. High Temperature superconductors discovered starting in 1987 CuO planar materials with T_c up to $\approx 150K$ No agreed explanation for High T_c superconductivity! Fullerines (A_3C_{60} , A = Na,K,Cs) have T_c up to $\approx 50K$