489 S 04 Lecture 28

489 S 04 Lecture 28

Review of Course - Incomplete!

- 1. Fundamental principles
 - (a) Quantum Statistics
 - Partition Function
 - Fermi Distribution for non-interacting Fermions Fermi Energy
 - Bose-Einstein Distribution for non-interacting Bosons
 - Interacting particles
 - (b) Periodicity Ordered State of matter
 - Crystal Structure = Lattice + Basis
 - Primitive Cells, e.g., Wigner-Seitz Cell
 - Reciprocal Lattice
 - Laws for elastic scattering Bragg Law
 - Brillouin Zone
 - (c) Conservation Laws for inelastic scattering
 - Energy
 - Momentum (± reciprocal lattice vector)
 - (d) Bloch theorem
 - Electron states Bands $\epsilon_n(k)$, n=1,2, ... ∞
 - Fermi Surface in a metal
 - Lattice vibrations Dispersion curves ω_n , n=1,2, ... $3N_{atoms-per-cell}$ in 3 dimensions
 - Counting of states in bands
 - Density of states
 - (e) Dynamics of electrons in electric/magnetic fields
 - Equations of motion: $h v = \text{grad } \epsilon$, h dk/dt = force
 - Filled bands
 - Electrons and holes
 - Effective mass
 - Classical orbits in a magnetic field
 - (f) Quantization of orbits in a magnetic field
 - Flux quantization, de Hass van Alphen (and other) effects
 - Landau Levels in 2d Quantized Hall Effect
 - (g) Magnetic Solids have long range magnetic order
 - Ferromagnets, Antiferromagnets
 - Magnons

489 S 04 Lecture 28

- (h) Superconductors have subtle long range order
 - Exclusion of magnetic field
 - Instability of Fermi Surface to attractive interactions (Cooper pairs)
 - Relation of currents to phase of complex order parameter
 - Flux Quantization hc/(2e)
 - Persistent currents

2. Properties of Condensed Matter

- (a) Cohesive Energy: Four types of bonding
- (b) Equilibrium Thermal properties
 - Internal Energy, Specific heat
- (c) Lattice Vibrations
 - Phonons, velocity of sound
 - Lattice Specific Heat
 - Thermal Conductivity
- (d) Electrical Conductivity
 - Drude theory
 - Specific Heat linear term in metal
 - Hall Effect
 - Quantized Hall Effect
- (e) Semiconductors
 - Extrinsic, Intrinsic (Law of mass action)
 - Electrons, holes, Hall effect
 - p-n junction rectifier, p-n-p, n-p-n transistor
 - Field effect transistor
 - Metal Insulator transition with doing concentration
- (f) Magnetism
 - Net spin and/or orbit moments
 - Phase transition to ordered state
- (g) Superconductivity
 - Zero resistance
 - Meissner Effect
 - Type I and type II superconductors
 - Flux Quantization hc/(2e)
- 3. Important Model systems
 - (a) Harmonic oscillator chain, e.g., with nearest neighbor interactions
 - (b) Debye Model for phonons

489 S 04 Lecture 28

- (c) Free, Independent Electron Gas
- (d) Nearly free electron approximation
- (e) Tight binding approximation with short range matrix elements
- (f) Effective mass approximation
- (g) pn junctions in semiconductors; npn, pnp transistor
- (h) Quantum wells in semiconductors 2-d electron gas
- (i) Integral Quantum Hall Effect
- (j) Localized magnetic moments Caused by Electron-Electron Interactions
 - Hund's Rules
 - Heisenberg model for interactions between neighboring moments
 - Curie Law, Curie-Wiess mean field models
- (k) Cooper Pair BCS State

4. Key Experiments

- (a) Elastic Bragg scattering to observe periodicity X-rays, Neutrons
- (b) Inelastic scattering to observe excitations Photons, Neutrons
- (c) Photoemission and electron bands
- (d) Conductivity; Hall Effect
- (e) Quantization in Magnetic Field
 - de Hass van Alphen, etc. experiments
 - Quantum Hall Effect
 - Flux Quantization in macroscopic systems Superconductors (-2e)

5. Important Orders of Magnitude

- (a) Lengths atomic dimensions, radii of donor, acceptor states in semiconductors, typical densities, values of r_s in metals, wavelength of visible light, x-rays
- (b) Energies phonons, electron band widths, band gaps, magnetic interactions (≈ transition temp), Gaps in superconductors, Binding energies of typical solids, Binding energies of donors, acceptors in semiconductors, energies of visible light, x-rays
- (c) Temperatures transition temperatures for magnets, superconductors, Debye temperatures, Fermi temperatures in a typical metal
- (d) Magnitudes of different types of magnetic susceptibilities
- (e) Effective mass, dielectric constant in semiconductor like Si, or GaAs