
Lattice Waves 
 
Thus far, static lattice model. 
 
In reality, atoms vibrate even at 0T   because of zero-point vibration. 
 

Monatomic Crystals 
 
Basis = 1 atom.  Lattice: 1,2,3i i
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   ;t r R R u R   Actual atomic position = lattice position + vibration 
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r   =  ionic velocity (  105 cm/sec, typically)   electronic velocities (~108 cm/sec) 
 
Adiabatic approximation: system always in the electronic ground state; i.e., the electons 
follow the slow ionic motion. Good at moderate temperatures. 
 
Potential energy    U r R  ; no need to specify the electronic quantum numbers. 
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1st term = constant; set to 0.   
 

2nd term = 0 because U is a minimum at r R  (equilibrium position). 
 
Harmonic approximation (keeping 2nd order terms only): 
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Terms    3 4,O u O u   anharmonic effects or phonon-phonon interactions (later). 
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   ,D D   R R R R   translational symmetry (U and D are periodic) 

   D  R R   inversion symmetry  

   D  R R    because 
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 & inversion symmetry 

 
D = 3x3 symmetric tensor (for one atom per unit cell) 
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If  u R = same for all R  (uniform translation),   0F R .  
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N atoms.  3N coupled equations of motion.  Normal-mode coordinate transformation to 
decouple the motions. First step – apply Bloch theorem (lattice Fourier transform). 
 
Bloch theorem for electrons:   ie w  k r

k r  

 
For lattice vibrations, r R ,    w w k kR R  = constant. So, iu e k R . 

 
Solution:    i te  k Ru R e  ; k  in 1st BZ;  e = unit polarization vector. 
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Definition: dynamic matrix:     ie  k R
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D k D R     3x3 symmetric tensor 
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Eigenvalue problem:  e k  = eigenvector,  2M k  = eigenvalue; 3 modes (one atom cell). 
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D k D R k R  real 

D is real and symmetric; it has three real eigenvalues,  2
sM k , for each k , where s = 1, 

2, and 3 (branch index). 
 
The eigenvalues  2

sM k  are positive, because U is a minimum. So,  s k  = real. Keep 

positive root only.  With s included,        2
s s sM D k e k k e k . 

 
D is real and symmetric; so     ,s s s s  e k e k  (orthonormal set). 

 
For each k , there are 3 normal modes:  s k  &  se k  

 
N distinct k  in  1st BZ   3N normal modes for the solid = number of degrees of freedom 
of system 
 

 s k  phonon dispersion relation   

 
For 0k   (long wavelength limit),  
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With        2

s s sM D k e k k e k ,  2 2
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k    linear dispersion near zone center. 

 
Long wavelength lattice vibrations correspond to sound waves. 
 
Sound waves:  ~ order of cm, k ~ 10-7 Å-1 << BZ size 
 
 
 
 
 
 
 
 
 
 
 
All three branches are acoustic branches, i.e., k  . 
 
For k  along a high symmetry direction, we typically have: 
 

TA(2)

LA 3 
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Arbitrary High Symmetry 

1,2 e k : transverse acoustic modes  TA k  

 

3e k : longitudinal acoustic mode  LA k  

 
Typically, LA TA   (harder to compress than to bend a spring). 
 
For k  along an arbitrary direction, the modes are generally mixed. One might have quasi-
LA & quasi-TA modes.  
 
3D 1D, 3x3 tensor D becomes 1x1. Just one branch (LA). 
 
2D: 2 branches, one LA and one TA along high symmetry directions. 
 
 

1D Model (one atom per unit cell) 
 
 
 
 
 

 = atom or atomic plane; connected by springs of force constant K 
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Harmonic approximation:      21
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Discrete plane wave solutions (Bloch form):      i k R t i k na tu na e e    , where R na . 

 
2 2 ika ikaM K e e         Take positive root only (frequency is always +). 

 

Dispersion relation:   1
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1st BZ 
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A single branch: N atoms, N modes, N solutions, N degrees of freedom. 
 

For 0ka  ,  
K

a k
M

    

Phase velocity 
k


   =  group velocity  

d K
a

dk M


    = sound velocity. 

 
1D Model with 2 Atoms per Unit Cell 

 
 
 
 
 
 
 

        

        

22

2 1 1 2

22

2 1 1 2

1
2 2

1
2 2

n n

n n

K G
U u na u na u n a u na

K G
u na u na u na u n a

         

         

 

 
 

            1 2 1 2 1
1

1
U

Mu na K u na u na G u n a u na
u na

            
  

             2 1 2 1 2
2

1
U

Mu na K u na u na G u n a u na
u na

            
  

 1n a na  1n a

1 2

MM
K G

K G



 
Bloch theorem:  1 1

ikna i tu na e e     2 2
ikna i tu na e e   
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2 equations with 2 unknowns. Nontrivial solution  determinant = 0  
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  relative amplitudes. 

 
2 solutions (2 different frequencies) for each k .   
 
Total 2N  normal modes corresponding to 2N  
degrees of freedom. 
 
Acoustic branch (lower branch): 
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,  sound waves. 
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optical branch

1st BZ 
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acoustic branch

At the zone center, all atoms move togther  uniform motion, no restoring force, 
frequency = 0. 
 
Optical branch:  
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  , the two atoms move against each other. If the two 

atoms have opposite charges (ionic crystals), the oscillating dipole can couple to EM 
waves. The mode is "optically active" and so the name is "optical branch." EM waves 
(infrared) with energies matching the lattice vibrations have very smal momentum ( 0k  ). 
 
Zone center 0k  : 
 
 
acoustic mode:  
  
 
    
optical mode: 
 
 
 

Zone boundary k
a


 , motions in neighboring unit cells are out of phase. 

 



 
 
acoustic mode:  
  
 
    
optical mode: 
 
 
Limiting case: K G ; all atoms (same mass) are equally spaced  one atom per unit cell 

with spacing 
2

a
. Brillouin zone folding (unfolding) 
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Gap 
vanishes 

Mode counting:  
 Basis Branches 
1D 1 atom 1 acoustic 

2 atoms 1 acoustic + 1 optical 
n atoms 1 acoustic + (n – 1) optical 

3D 1 atom 3 acoustic 
2 atoms 3 acoustic + 3 optical 
n atoms 3 acoustic + 3(n – 1) optical 

 
Typical 3D crystal with 3 atoms per unit cell: 



k arbitrary k high symmetry 

LA 

TA (2)

TO (2) 

TO (2) 

LO 

LO 

L = longitudinal; T = transverse; 
A = acoustic; O = optical 
 
Typically: 
 
At zone center for each set,LO 
> TO for ionic crystals; LO = 
TO for covalent crystals 
 
LA > TA near zone center 
(higher longitudinal speed of 
sound) 



Quantization of Lattice Waves – Phonons 
 
Each normal mode  , sk  corresponds to a simple harmonic oscillator (SHO) with 

frequency  s k  and polarization  se k . 

 
Normal mode coordinate   sq k  that satisfies      2 0s s sq q k k k  

 
3D Monatomic Crystal 

 
Normal mode coordinate transformation (lattice Fourier transformation followed by 
diagnolizing the 3x3 dynamic matrix): 
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Inverse transform: 
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Proof (that  sq k  is the correct choice):   

           1 1 1i i
s s sq e e

MN N
 



       
  k R k R

R R R

k u R e k e k D R R u R       

       1 is ie e
MN

  



      
  k R R k R

R R

e k
D R R u R    

           1 1 1s i i
se e

M MN N
  

 

     k R k R

R R

e k
D k u R u R D k e k      

1 1

MN
  ( ) M




R

u R   2 2( ) ( ) ( )i
s s s se q   k Rk e k k k

  Q.E.D. 

 
Can be generalized to include a nontrivial basis (math is a bit more complicated). 
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After normal mode transformation, the motions are decoupled: 
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where we have chosen    s s e k e k , allowed by inversion symmetry.  
 

Quantization:     , i      R,Ru R P R    
 
One can show:    
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   s sp p  k k      , 0s sq q     k k       , 0s sp p     k k  etc. 
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Lowering operator:         2  1 2  s s s s sa M q i M p  k k k k k   

 
Raising operator:          2  1 2  s s s s sa M q i M p    k k k k k   
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3N independent SHOs 
 
For mode  , sk , eigenstates sn k  

 

snk = 0, 1, 2, …. = mode occupation number = number of phonons 
 

Phonons are bosons (occupation number is unlimited). 
 

Total energy =      1
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Phonon energy =  s k    1

2 s k  = zero point energy  

 

1s s s sa n n n   k k k k  phonon destruction operator 

 

1 1s s s sa n n n     k k k k  phonon creation operator 

 

     s2  s s sq M a a  k -kk k  Note the s sa ak -k  combination (important later for 

anharmonic effects, electron-phonon coupling, etc.). 
 

     s2  s s sp i M a a   k -kk k  
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...sa k  (exercise for you) 

 
 
Classical Quantum 
Normal modes Phonon modes 

SHO: 2 +  = 0q q  
SHO: 

1
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Energy arbitrary 
Energy quantized 
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Amplitude arbitrary Amplitude not arbitrary; zero-point vibration 
 
 

Crystals with a Multi-atom Basis 
 
The formulas are similar, with an additional index for the various atoms in the basis. The 
number of modes at each k increases to 3n. Each polarization vector has 3n components, 
and it is generally complex (the motions of the atoms in the basis are related by certain 
phases). 
 

Example: 6x6 dynamic matrix of Ge (2 atoms per unit cell); see F. Herman, Lattice 
Vibrational Spectrum of Ge, J. Phys. Chem. Solids 8, 405 (1959); 6-th neighbors 
 

 



Phonon Dispersion Relations of Ge (two atoms per unit cell): 
 

 
 
Note the TO and LO branches are degenerate at zone center. 
 
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiGe/mechanic.html 

Phonon Dispersion Relations of NaCl (two atoms per unit cell): 
 
 

 
 
Note the large splitting between TO and LO at zone center (LO-TO splitting related to 
ionicity) 
 
http://people.web.psi.ch/delley/nacl.html 



Phonon Dispersion Relations of Pu (fcc, one atom per unit cell) determined by inelastic x-
ray scattering. Note the anomalies. 
 

0

2

4

6

8

10

12

T

L

L

T
2

T
1

L

T

[0] [][00] LX

P
h

o
n

o
n

 E
n

e
rg

y 
(m

e
V

)

C rystal Momentum

Soft 
Mode 

Anomaly 
  ’,  

Anisotropy 
  vLA = vTA

Phonon dispersion relations of graphite/graphene, M. Mohr et al., Phys. Rev. B 76, 
035439 (2007). 2 atoms per unit cell in a graphene sheet. 
 

 

 
 



Phonon dispersion relations of chromium (a spin density wave system) 
Phys. Rev. B 4, 969 (1971).  Kohn anomalies indicated by vertical arrows.  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Phonon dispersion relation of TTF-TCNQ (quasi-1d) along the chain direction.  PRL, 36, 
801 (1976). Note the very pronounced Kohn anomaly (Periels instability, 2kF anomaly). 
Flat bands are derived from molecular excitations. 
 

 
 


