
Review 
 
Drude model – (free electron approximation) + (independent electron approximation) + 
(Maxwell Boltzmann statistics) 
 
Sommerfeld model – (free electron approximation) + (independent electron approximation) 
+ (Fermi Dirac statistics) 
 
Next: 
 
Band structure – (crystal potential) + (independent electron approximation) + (Fermi Dirac 
statistics) 
 
Crystal potential arises from the crystal structure made of atoms -- important for 
understanding the differences among metals, semiconductors, and insulators. 
 

 
Crystal  Structure 

 
Crystal structure is evident from naturally formed facets of many 
mineral samples. 
 
Based on x-ray diffraction: 
 
Crystal structure = periodic,(b) infinite(a) repetition of structural units(c) 
 

(a) Infinite: 2310N   , bulk properties are independent of surfaces. 
  
(b) Periodic: translational symmetry 
 
Define Bravais lattice with lattice vector 1 1 2 2 3 3n n n  R a a a ; 1,2,3n  = integers 

 

1,2,3a   primitive lattice vectors (noncoplanar); they generate the lattice. 

      
2d example:  
 
 
 
 
 
 

 
 
(c) Structural unit: basis = a set of atoms associated with each lattice point 
 

Summarize   :   crystal structure = Bravais lattice + basis  

 
Theorem: A crystal looks the same from every Bravais lattice point.   
 
 1TH T H   (system is invariant under translation) 

a2 
a1 



 
Theorem:  Primitive vectors are not unique; there are  ways of choosing them. 
 
2d example: 
 
 
 
  
 
     
 
 
Definition: primitive unit cell = a region in space, when translated using all lattice vectors 
R, fills neatly the whole space (w/o overlapping regions or voids) 
 
2d examples: 2 possible choices out of  
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3d example: (obvious choice) 
 
 
 
 
 
 
 

Theorem: volume of primitive cell  1 2 3c

V

N
   a a a ; V = volume of crystal, N = # of 

lattice points 
 
One unit cell contains one lattice point (on average). 
 
Definition: Wigner-Seitz unit cell = the region of space that is closer to a selected lattice 
point (origin O) than to any other lattice points; it is a primitive unit cell. 
 
Method of construction:   
 
1. Draw lines from O to all nearby lattice points. 
2. Draw  bisectors (planes in 3-d). 
3. Find the smallest volume enclosed. 
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2d example: 
 
 
 
 
 
 
 
 
Proof: Every point in space can be uniquely assigned to a W-S cell associated with a 
lattice point (except for those on the boundaries, but those have zero volume). 
Translational symmetry   all W-S cells are the same. 
Since each point in space (other than those on boundaries) is accounted for once and 
only once, we have no overlapping regions or voids. 
 
   W-S cell is a primitive cell. 
   It does not depend on the choice of 1,2,3a . 

   As symmetric as the original lattice (e.g., 3-fold, 4-fold, mirror planes, …). 
 
Definition: conventional unit cells (non-primitive cells): volume n   volume of primitive 
cell; filling the whole space when translated using a subset of R ;  containing n lattice 
points per cell; often chosen for convenience. 

 
Examples of Bravais lattices: 
 

1. Simple cubic (sc)  
 

1,2,3a   mutually perpendicular; 1 2 3a a a a     

a = lattice constant or lattice parameter   
Primitive cell = cube = conventional cell 
W-S cell is also cubic. 
Po, the only one in the periodic table (under typical conditions) 

 
2. Body centered cubic (bcc) 
 
Conventional cell = sc + another atom at center of cube body 
Primitive lattice vectors (symmetric form): 

    1 ˆ ˆ ˆ 1,1,1
2 2

a a
x y z     a  

    2 ˆ ˆ ˆ 1, 1,1
2 2

a a
x y z    a  

    3 ˆ ˆ ˆ 1,1, 1
2 2

a a
x y z    a

 
 

a = lattice constant 
    
Make sure all points are generated: 

   1 1 2 2 3 3 2 3 1 3 1 2 1 2 3 1 2 3, , , ,
2 2
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n n n n n n n n n n n n          R a a a   
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 1,2,3   = integers but not arbitrary; 1,2,3n   arbitrary. 

 1 2 32 n     even, etc. So, 1,2,3   either all even or all odd. 

 0,0,0
2

R
a

   corner;  2,0,0  corner;  0,2,0  corner; …  1,1,1   body-center; … 

 
Wigner-Seitz cell: “truncated octahedron” (see textbook) 
 

Conventional cell: 
3  a   v   

Primitive cell: 

3 3

1 2 3

1 1 1
a a

 = 1 1 1
8 2

1 1 1

v


    


a a a  

 
Conventional cell = 2 x primitive cell 
 
bcc = sc + a two-atom basis (useful for X-ray diffraction). 

     1 2 31,0,0 , 0,1,0 , 0,0,1a a a  a a a   Basis:  0 0,0,0ad  and  1 1,1,1
2

a
d  

Examples: Ba, Cr, Li, etc. 
 
 
3. Face centered cubic (fcc)  
 
Conventional cell = sc + 6 atoms at faces centers 
 

Bravais lattice 
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R ai in     generates the lattice (verify yourself). 
 

Conventional cell:  
3  a   v     Primitive cell: 

3
1 2 3 4v a   a a a   

 
There are 4 lattice points per conventional cell 
 
Counting   Lattice points        Weight   Total 
    8 corner atoms  1/8              1 
    6 face atoms       1/2        3 
                       4 
 
Or, one could offset the cube slightly to avoid shared points.   
 
Examples: Ni, Cu, Ag, Au, Al, Pt, … 
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4. Simple hexagonal (sh) 
 
60º  triangular net in 2d, stacked vertically directly atop 1 2 3a a a a c    

1 2 3

3
ˆ ˆ ˆ ˆ, ,

2 2

a
a x x a y c z   a a a

   

 a, c: lattice constants;  z-axis = c-axis

  
 
 
 
 
 
 
 
 
 
Examples of lattice + nontrivial basis, one kind of atom: 
 
1. Diamond structure  
 
fcc lattice (lattice constant a) 

+ 2-atom basis  at  0,0,0  and  1,1,1
4

a
 

 
Coordination number = 4; tetrahedral bonding 
Examples: diamond, Si, Ge, grey-Sn 

a 

c 

a 

2. Hexagonal close packed (hcp) 
 
hcp = (simple hexagonal lattice)  

+ 2-atom basis at  0,0,0  and 1 2 3

1 1 1

3 3 2
a a a    

For close packed hard spheres,  
8/ 3c a    (ideal structure); 

but most are not ideal. 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
Green: first layer. Gold: second layer. The third layer repeats the first layer positions. 
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Stacking sequence: ABAB 
 
Examples: Ru, Cd,  Re,  Y,  Hf ,  Gd,  etc. 
 
 
 
Changing the stacking sequence to ABCABC yields the fcc structure.  
 
 
 
 

 
 
 
 
 
 
 
 

 
 
First layer at A sites; second layer at B sites, third layer at C sites; fourth layer at A sites; 
etc.  
 
 
 

A 
B

C 

Looking along the body diagonal, the fcc structure can 
be viewed as a close stacking of atomic layers.  
 
fcc and hcp have the same packing density (close 
packed). 
 
 
 
 
 
 
 
 
 
Examples of lattice + nontrivial basis, different kinds of atoms 
 
1.  Zinc blende (ZnS)   
 

fcc lattice + 2-atom basis, Zn at  0,0,0 , S at  1,1,1
4

a
 

Replacing Zn and S by C  diamond structure  
 
Coordination number = 4  
 
 



2.  NaCl structure  
 

fcc lattice + 2-atom basis, Na at  0,0,0 , Cl at  1,1,1
2

a
 

 
Two interpenetrating fcc lattices. 
 
 
3.  CsCl structure 
 

sc lattice + 2-atom basis, Cs at  0,0,0 , Cl at  1,1,1
2

a
 

 
Replacing Cl by Cs   bcc Cs 
 
Coordination # = 8 
 
4.  Perovskite structure (CaTiO3, or ABO3 generally) 

 
sc lattice + 5-atom basis  
Ca2+ at A site, Ti4+ at B site, and 3 O atoms 
 
Key feature: oxygen cage. Many closely related variations. 
Examples: complex oxides, high-temp superconductors,  
colossal magnetoresistive materials, ferroelectrics , …. 

Symmetry (Brief review in terms of group theory)   
 
Space group: all symmetry operations {PT} that leave the crystal invariant, where P is a 
point operation (leaving one point fixed) including rotation, inversion, reflection, and 
combos, and T is a translation. T might be a translation by 1 1 2 2 3 3n n n  R a a a , but it 
could also involve a nontrivial fraction of R in more complicated cases:  
 
Glide planes – mirror reflection + translation by, for example, ½ of a primitive lattice vector 
Screw axes – rotation by  + translation by, for example, ½ of a primitive lattice vector 
 
Translation group: all translations by 1 1 2 2 3 3n n n  R a a a ; an invariant subgroup of the 
space group (invariant under all symmetry transformations). Note {IT} (I being the identity 
operator) is not necessary the translation group, as there can be additional translations 
involving a nontrivial fraction of R  associated with glide planes and screw axes. 
 
Point group: all operations {PI}. Not necessarily a subgroup of the space group because 
of glide planes and screw axes. It leaves the point lattice & Wigner Seitz cell invariant. 
 
Factor group: (Space group) ÷ (Translation group); isomorphic to the point group. 
 
       Bravais lattice    Crystal structure  
Point group  7 (crystal systems)    32    
Space group  14 (lattice structures)         230    
 
Listed in M.J. Berger, Elementary Crystallography, Wiley, NY, 1963. 



See textbook or http://en.wikipedia.org/wiki/Crystal_structure 
 

7 crystal 
systems 

Triclinic Monoclinic Orthorhombic Hexagonal 
 

Rhombohedral 
(trigonal) 

Tetragonal 
 

Cubic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14 Bravais 
lattices 

 

Simple Simple 

 
 

Simple Simple 

  
 

 

Base-centered Base-centered Body-centered Body-centered 

  
 

 

Body-centered Face-centered 

 

 

Face-centered 

 

 

Bravais lattices: 
 
Consider the highest symmetry, the cubic point group Oh (full symmetry group of a cube); 
there are 3 Bravais lattices having this point group symmetry: sc, fcc, and bcc. 
 
Distorting the system in various ways results in additional crystal systems and lattice 
structures that have lower symmetries (fewer symmetry operations). 
 
The triclinic structure has the lowest symmetry. 
 
For systems with one atom per unit cell, there are only 14 possible structures (Bravais 
lattices).  
 
 
 
Crystal structures: 
 
The number of possible structures explodes to 230 as you add a basis (which tends to 
reduce the number of symmetry operations).  
 
For enumerating all possible structures, the exercise is to reduce the symmetry in a 
systematic manner. Make sure that all structures are distinct. It is an interesting but time-
consuming exercise. 
 

  
 


