1. This problem concerns the band structure of a single sheet of carbon, graphene (see Fig. (1)). Nearest neighbour atoms are connected by the set of vectors,
\[\delta_1 = \frac{a}{2} \left(1, \sqrt{3} \right), \quad \delta_2 = \frac{a}{2} \left(1, -\sqrt{3} \right), \quad \delta_3 = -a \left(1, 0 \right) \]
and the primitive lattice vectors are
\[a_1 = \frac{a}{2} \left(3, \sqrt{3} \right), \quad a_2 = \frac{a}{2} \left(3, -\sqrt{3} \right) \]
where \(a = 1.42\,\text{Å} \), the nearest-neighbour carbon-carbon spacing. The first Brillouin zone shown in Fig. (1c) is spanned by the reciprocal vectors,
\[b_1 = \frac{2\pi}{3a} \left(1, \sqrt{3} \right), \quad b_2 = \frac{2\pi}{3a} \left(1, -\sqrt{3} \right). \]
The corners of the first Brillouin zone are located at
\[K = \frac{2\pi}{3a} \left(1, \frac{1}{\sqrt{3}} \right), \quad K' = \frac{2\pi}{3a} \left(1, -\frac{1}{\sqrt{3}} \right). \]
You are to a) write down the tight-binding Hamiltonian for this system and solve it for the energy bands, b) determine the values (there are two) of \(k \) for which the energy dispersion vanishes, c) show that the dispersion can be written as
\[E(q) = \pm \hbar v_F |q| \]
where \(v_F = 3t/2ha \approx 10^6 \text{m/s} \) and \(q \) is the deviation from the value of the momentum at the zero crossing, and d) show that the effective Hamiltonian near the zero crossings can be written as
\[H \equiv \hbar v_F \begin{pmatrix} 0 & q_x + iq_y \\ -iq_y & 0 \end{pmatrix} = \hbar v_F \sigma \cdot q \]
for the \(K' \) point and
\[H \equiv \hbar v_F \begin{pmatrix} 0 & -q_x - iq_y \\ q_x - iq_y & 0 \end{pmatrix} = \hbar v_F (-q_x \sigma_x + q_y \sigma_y) \]
for the \(K \) point.
FIG. 1. Graphene lattice. a) Two interpenetrating honeycomb lattices describing the structure of graphene. The star of David shows the penetrating sublattices. b) Primitive lattice vectors and, \mathbf{a}_i, and nearest-neighbour lattice vectors, δ_i. The labels A and B refer to the two kinds of carbon atoms in graphene. c) First Brillouin zone spanned by the lattice vectors \mathbf{b}_i.