

Figure 1: Figure for Problem 1. Schematic illustration of the momentum and anomalous condensate pair amplitude function in the BCS theory.

## Assigned Tuesday, November 17, 2005. Due Friday, December 5, 2005

1. Momentum distribution  $n_k$  and condensation amplitude  $F_k$  in the BCS state

A. Derive an explicit expression for the momentum distribution  $n_k = \langle \tilde{\phi} | a_{k\sigma}^+ a_{k\sigma} | \tilde{\phi} \rangle$ , where  $\tilde{\phi}$  is the BCS state. Show that  $n_k = v(k)^2$  from which it follows that the expression for  $n_k$  can be written in terms of the unperturbed electron states  $\epsilon_k^0$  and the gap function  $\Delta_0$  which is taken be be constant independent of k for simplicity. Show the distribution has the continuous form shown in the figure for the usual case  $\Delta_0 \ll E_F$ .

B. Similarly show that the anomalous expectation value  $F_k \langle \tilde{\phi} | a_{k\uparrow}^+ a_{-k\downarrow}^+ | \tilde{\phi} \rangle = U(k)v(k)$ and thus has a peak near the Fermi energy as shown in the figure. The anomalous expectation value  $F_k$  is the amplitude of state k in the condensate.

- 2. Calculate the mean square radius  $\langle r^2 \rangle^{1/2}$  for a Cooper pair in the singlet state. Assume an isotropic Fermi surface and constant interaction V independent of **k** for the energy range  $\omega_D$ . You may assume the bound state energy is  $E \ll E_F$ . [Hint: it may be helpful to use the expressions in **k** space and use  $\mathbf{r} \to d/d\mathbf{k}$ .] Note: This problem is essentially the same as Phillips problem 11.5.
- 3. Bogoliubov transformation

A. First go through the steps shown in the notes to write the hamiltonian for the system with BCS pairing as (Note that there is a mistake in the expression for  $H_M$  in typed notes show passed out in class)

 $H_M = \sum_{k\sigma} \epsilon_k^0 a_{k\sigma}^+ a_{k\sigma} - \sum_k (\Delta_k a_{k\uparrow}^+ a_{-k\downarrow}^+ + c.c. - \Delta_k b_k^*)$ 

This shows that the gap  $\Delta$  play the role of a mean "pairing" field analogous to an ordinary effective potential that is a mean field that acts on the density.

B. The Bogoliubov transformation expresses the electron creation and annihilation operators as linear combinations pair breaking operators

 $\begin{aligned} a_{k\uparrow} &= u_k^* \gamma_{k0} + v_k \gamma_{k1}^+ \\ a_{-k\downarrow}^+ &= v_k^* \gamma_{k0} + u_k \gamma_{k1}^+ \\ \text{and similarly for } a_{k\uparrow}^+ \text{ and } a_{-k\downarrow}. \end{aligned}$ 

Show that the  $\gamma$  operators obey fermion anticomutation rules.

C. Show that the transformation leads to an expression for hamiltonian  $H = E_0 + \sum_{k\sigma} \epsilon_k (\gamma_{k0}^+ \gamma_{k0} + \gamma_{k1}^+ \gamma_{k1})$  where  $E_0$  is the ground state energy that includes the BCS binding energy and the excitations are non-interacting fermions with energy  $\epsilon_k = \left[ (\epsilon_k^0)^2 + \Delta_k^2 \right]^{-1/2}$ 

This is the energy to add an unpaired fermion which has a gap.

4. Using the Ginsburg-Landau approach show that the free energy of a superconductor relative to the normal state is given by

$$F_S - F_N = -\frac{1}{8\pi}H_c^2$$

where  $F_S$  and  $F_N$  are the free energies evaluated at zero magnetic field and any given temperature  $T < T_c$ , and  $H_c$  is the critical magnetic field at that temperature.

This shows that the free energy of the superconducting state is determined directly from measured quantities and was established before a successful microscopic theory was formulated. (This problem is the same as Phillips problem 11.1.)