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561 F 2005 Lecture 2
Background and notation

Basic Equations for Interacting Electrons and Nuclei
The goal of this course is to describe properties of condensed matter using concepts and
theoretical methods firmly rooted in the fundamental equations. Thus our starting point is
the hamiltonian for the system of electrons and nuclei,
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where lower case letters denote the electrons and capital letters, the nuclei of charge ZI and
mass MI . (Here we ignore relativistic effects and magnetic fields.) The hamiltonian can be
written

Ĥ = T̂N + T̂e + Û ≡ T̂N + Ĥe, (2)

where the electron hamiltonian Ĥe contains all the potential terms Û . (The nucleus-nucleus
interaction is included for convenience; it is just an added energy EII independent of electron
coordinates.) We will use atomic units where -h = me = e = 1, so the the equations simplify
and the nuclear kinetic energy becomes T̂N =

∑
I
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∇2
I .

Adiabatic or Born-Oppenheimer Approximation
See Martin, Appendix C on ”Adiabatic Approximation”; Phillips, Ch. 2; Pines, Ch. 5;
Ziman, Prin. Th. Of Solids, p. 169-172; Born and Huang, Appendix VIII.

There is only one small parameter in the problem, the mass ratio me
MI

. Therefore we
start with analysis which uses only this fact and no other approximations. If we first set
the mass of the nuclei to infinity, then the kinetic energy of the nuclei can be ignored. This
is the Born–Oppenheimer or adiabatic approximation, which is an excellent approximation
for many purposes, e.g., the calculation of nuclear vibration modes in most solids. This
leads to division of ”low energy scales for nuclear motion” in which the electronic states
”follow the nuclei” adiabatically remaining in their instantaneous ground states, and ”high
energy scales for electrons” that describe the electronic excitations.

As discussed by Phillips, Ch 2, the nuclei tend to be much more localized around sites
than the electrons. This is easy to understand since the energy as a function of position
is similar for electrons and nuclei, but the nuclear mass is much larger leading to smaller
displacements δ. Simple arguments suggest δ ∝ a(me/MI)1/4, where a is the distance
between atoms. This is roughly (10−4)1/4 ∝ 1/10, much larger than stated by Phillips, but
still small.

Elementary Excitations Condensed Matter 1: Electronic states at fixed po-
sitions on the nuclei
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Thus we focus on the hamiltonian for the electrons, in which the positions of the nuclei
are parameters. This specifies the electronic problem which leads to the electronic states
at fixed nuclear positions {R}:

Ĥe({R})Ψi({r} : {R}) = Ei({R})Ψi({r} : {R}). (3)

This is the many-body equation for interacting electrons in the presence of fixed nuclei or
other fixed external potentials - the key fundamental problem for this course.

Elementary Excitations Condensed Matter 2: Nuclear Vibrations
The full solutions for the coupled system of nuclei and electrons

ĤΨs({r,R}) = EsΨs({r,R}), (4)

where s = 1, 2, 3, . . . , labels the states of the coupled system, can be written in terms of
Ψi({r} : {R}),

Ψs({r,R}) =
∑

i

χsi({R})Ψi({r} : {R}), (5)

since Ψi({r} : {R}) defines a complete set of states for the electrons at each {R}.
The states of the coupled electron–nuclear system are now specified by χsi({R}), which

are functions of the nuclear coordinates and are the coefficients of the electronic states
Ψmi. In order to find the equations for χsi({R}), insert expansion (5) into (4), multiply
the expression on the left by Ψi({r,R}), and integrate over electron variables {r} to find
the equation

[
T̂N + Ei({R})−Es

]
χsi({R}) = −

∑
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where the matrix elements are given by Cii′ = Aii′ + Bii′ , with
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Here 〈Ψi({r} : {R})|O|Ψi′({r} : {R})〉 means integrations over only the electronic variables
{r} for any operator O.

The adiabatic or Born-Oppenheimer approximation is to ignore the off-diagonal Cii′

terms, e.g., the electrons are assumed to remain in a given state m as the nuclei move.
Although the electron wavefunction Ψi({r} : {R}) and the energy of state m change, the
electrons do not change state and no energy is transferred between the degrees of freedom
described by the equation for the nuclear variables {R} and excitations of the electrons,
which occurs only if there is a change of state i → i′. The diagonal terms can be treated
easily. First, it is simple to show (exercise for the reader) that Aii = 0 simply from the
requirement that Ψ is normalized. The term Bii({R}) can be grouped with Ei({R}) to
determine a modified potential function for the nuclei Ui({R}) = Ei({R}) + Bii({R}).
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Thus, in the adiabatic approximation, the nuclear motion is described by a purely nuclear
equation for each electronic state i
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χni({R}) = 0, (9)

where n = 1, 2, 3, . . . , labels the nuclear states. Within the adiabatic approximation, the
full set of states s = 0, i, . . . , is a product of nuclear and electronic states.

So long as we can justify neglecting the off-diagonal terms that couple different electron
states, we can solve the nuclear motion problem, Eq. (9), given the function Ui({R}) for
the particular electronic state i that evolves adiabatically with nuclear motion. This is an
excellent approximation except for cases where there is degeneracy or near degeneracy of
the electronic states. If there is a gap in the electronic excitation spectrum much larger than
typical energies for nuclear motion, then the nuclear excitations are well determined by the
adiabatic terms. Special care must be taken for cases such as transition states in molecules
where electronic states become degenerate, or in metals where the lack of an energy gap
leads to qualitative effects.

The solution of this problem is to expand in terms of displacements, leading to harmonic
and anharmonic oscillator hamiltonians. (See, for example, Born and Huang, Pines Ch. 2,
and Doniach Ch 1.) Define displacements of the atoms from their equilibrium positions,
RI = R0

I + uI , and expand the potential energy in powers of uI ,
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where the linear terms vanish, the D’s are second derivatives, etc. The exact eigenstates
can be written as χm({uI}).

Elementary Excitations Condensed Matter 3: Electron-Phonon coupling
Electron-phonon interactions result from the off-diagonal matrix elements Cii′ that de-

scribe transitions between different electronic states due to the velocities of the nuclei. The
dominant terms are given in Eq. (7), which involves a gradient of the electron wavefunc-
tions with respect to the nuclear positions and the gradient operator acting on the phonon
wavefunction χ. Combination of these operators leads to an electronic transition between
states i and i′ coupled with emission or absorption of one phonon.

The terms are indeed generally small with the largest ∝ δ2 ∝ (me/MI)−1/2

The steps involved in writing the expressions for the matrix elements are: 1) to express
the nuclear kinetic operator ∇J in Eq. (7) in terms of phonon creation and annihilation
operators, and 2) to write out the perturbation expression for the matrix element. The
latter step can be accomplished by noting that the variation in the electron function due to
the displacement of nucleus J is caused by the change in potential due to the displacement.
To linear order the relation is

〈Ψi({r} : {R})|∇J |Ψi′({r} : {R})〉 = 〈Ψi({r}:{R})|∇JV |Ψi′ ({r}:{R})〉
Ei′ ({R})−Ei({R}) . (11)

This leads to the form of the electron-phonon matrix elements (treated in second quan-
tization later) that are the basis for understanding electrical transport in metals, polaron
formation in insulators, and the BCS theory of superconductivity.
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Force (Hellmann-Feynman) Theorem
(Ref. R. P. Feynman, Phys Rev 56, 530 (1939), and many texts. The first derivation
is probably P. Eherenfest, Z. Phys. 1927, where he proved this theorem as part of the
correspondence principle of quantum and classical mechanics. )

Derivatives of the energy with respect to a parameter λ can always be written
∂E

∂λ
= 〈Ψ0|∂H

∂λ
|Ψ0〉 (12)

using the fact that the energy is stationary in the ground state wavefunction Ψ0. Thus
within the adiabatic approximation, the force on any atom is given simply by
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This gives the force strictly in terms of Coulomb interactions with the average electron (and
ion) density independent of electron-electron correlations and interactions.

Similarly, there are expressions for the pressure from the virial theorem in terms of the
ground state.

The same reasoning as that for the Force Theorem leads to the well-known coupling
constant integration formulas. Let us define a parameter in the hamiltonian λ such that
λ = 0 corresponds to a simple hamiltonian such as non-interacting particles and λ = 1
corresponds to the full complicated hamiltonian such as interacting particles. By integrating
from λ = 0 to λ = 1 one can find the change in energy from the integral of the force times
dλ,
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For example, if a parameter such as the charge squared of the electron e2 in the interaction
energy in the hamiltonian is scaled by e2 → e2λ, then λ can be varied from 0 to 1 to vary
the hamiltonian from the non-interacting limit to the fully interacting problem.

Summary
Division of excitations of condensed matter into:

• Low energy ”screened” motion of the nuclei

• Many-body correlated motion of nuclei which describe vibrations and structural phase
transitions

• Higher energy excitations of the electrons - EXCEPT for the low energy excitations
near the Fermi energy of a metal

• Adiabatic Approximation in which electrons follow the nuclei adiabatically

• The Force Theorem (Hellmann-Feynman Theorem)

• The effects of the terms omitted in the adiabatic approximation: the scattering of
electrons between different electronic states due to lattice vibrations - important for
transport; the resulting many-body problem leads to superconductivity

• Other interesting cases where electrons develop low energy scales, in strongly-correlated
systems


