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Elementary Excitations Condensed Matter 1: Electronic States - Introduc-
tion

References: Phillips, Ch. 1,4; Pines, Ch. 3; Ashcroft Chs. 2,3,17; Mahan, 1.6 and 5.1;
Doniach, Ch. 6; Fulde, Ch. 2.

In the Adiabatic Approximation, the states of the electrons are derived with the nuclei
in instantaneous fixed positions. The states of the electrons can be determined for the nuclei
at their equilibrium positions. This is a complete set of states.

Hartree-Fock Theory
The starting point for understanding interacting particles, was first applied to atoms in 1930
by Fock. This is a theory to first order in the interaction, i.e. it assumes wavefunctions are
zero-order (the same as for non-interacting particles in an effective potential) and evaluates
the energy to first order. The general formulas are given in many references. We will give
the first quantized form here and the second quantized form later (see Phillips Ch. 4).

In this approach one writes a properly antisymmetrized determinant wavefunction for
a fixed number N of electrons, and finds the single determinant that minimizes the total
energy for the full interacting hamiltonian. The determinant wavefunction Φ can be written

Φ =
1

(N !)1/2

∣∣∣∣∣∣∣∣∣∣∣
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. . . . . .

. . . . . .
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, (1)

where the φi(rj , σj) are single particle “spin-orbitals” each of which is a product of a function
of the position ψσ

i (rj) and a function of the spin variable αi(σj). If the spin-orbitals are
orthonormal the equations simplify greatly and Φ is normalized to 1. If the hamiltonian is
independent of spin the expectation value of the hamiltonian is given by

〈Φ|Ĥ|Φ〉 =
∑
i,σ

∫
drψσ∗

i (r)
[
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]
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+
1
2

∑
i,j,σi,σj

∫
drdr′ψσi∗

i (r)ψσj∗
j (r′)
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drdr′ψσ∗

i (r)ψσ∗
j (r′)

1
|r − r′|ψ

σ
j (r)ψσ

i (r′). (2)

The first terms are single-body expectation values and the third and fourth terms are the
direct and exchange interactions among electrons. The equations are simplified by including
the i = j “self-interaction,”which cancels in the sum of direct and exchange terms. When
this term is included, the sum over all orbitals gives the density and the direct term is
simply the Hartree Coulomb energy. The “exchange” term, which acts only between same
spin electrons since the spin parts of the orbitals are orthogonal for opposite spins.

The Hartree–Fock approach is to minimize the total energy with respect to all degrees
of freedom in the wavefunction with the restriction that it has the form (1). Enforcing
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orthonormality can be done by Lagrange multipliers. If the spin functions are quantized
along an axis, variation of ψσ∗

i (r) for each spin σ leads to the Hartree–Fock equations⎡
⎣−1

2
∇2 + Vext(r) +

∑
j,σj

∫
dr′ψσj∗

j (r′)ψσj

j (r′)
1

|r − r′|

⎤
⎦ψσ

i (r)

−
∑
j

∫
dr′ψσ∗

j (r′)ψσ
i (r′)

1
|r − r′|ψ

σ
j (r) = εσ

i ψ
σ
i (r). (3)

Note the form of the final exchange term that involves the exchange with other single
particle orbitals.

Koopmans’ theorem for meaning of the eigenvalues: the energies to remove electrons if
other electrons are not allowed to not respond. (Eigenvalues of empty orbitals are addition
energies to add electrons assuming the occupied states do not change. There are large
errors due to fact that empty states are affected by the full repulsion but are not part of
the exchange.)

Jellium
Jellium is the simplest condensed matter system - where the nuclei are replaced by a uniform
positive background. Together with the uniform electrons this forms a uniform neutral
system with no average Coulomb potential. The hamiltonian for Jellium is:

Ĥ =
∑

i

−1
2
∇2

i +
1
2

∑
i�=j

e2

|ri − rj | (4)

where it is understood that the divergent Coulomb sum is cancelled by the nuclear back-
ground.

The density parameter rs is defined by 4
3πr

3
s = 1

n = volume per electron in atomic units
(a0 = Bohr radii).

• High Density: rs << 1, kinetic energy dominates

• Low Density: rs >> 1, potential energy dominates.

• Real materials at intermediate rs: (Al, rs = 2; Si, rs = 2; Na, rs = 4; Cs, rs = 6.)

The Fermi momentum is given by kF rs = 1.92, and for the non-interacting case the
kinetic energy per electron is 3

5EF = 2.21
r2
s

Ryd. (Pines, p. 58.)

Hartree theory: Sommerfeld non-interacting electron model
Eigenstates are plane waves 1

Ωexp(ik·r) with energy ε(k) = k2/2 in atomic units. This agrees
semi-quantitatively with many properties of real metals: Specific heat; spin susceptibility;
band width; etc.
Terrible failure for binding energy - repulsive at all densities

Hartree-Fock Theory for Jellium
Reasonable for binding energy
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Terrible failure for all properties of the bands: specific heat; spin susceptibility; band width;
etc.
Hartree-Fock treatment of interactions leads to correction of non-interacting electron ener-
gies. The integrals can be done analytically (See Phillips, Pines, Ashcroft and Mermin),
leading to

εk =
1
2
k2 +

kF

π
f(x), (5)

where x = k/kF and

f(x) = −
(

1 +
1 − x2

2x
ln |1 + x

1 − x
|
)
. (6)

The factor f(x) is negative for all x; at the bottom of the band (x = 0), f(0) = −2, and
at large x it approaches zero. Near the Fermi surface (x = 1), f(x) varies rapidly and has a
divergent slope (a log singularity), as was first pointed by Bardeen. (See figures in Ashcroft
and Mermin, Ch. 17; Mahan, Ch. 5.; Phillips Ch. 5) This is a disaster for any application
of Hartree-Fock to metals and totally disagrees with experiments. Nevertheless the limiting
value at x = 1 is well defined, f(x → 1) = −1. Thus in the Hartree–Fock approximation,
exchange increases the band width W by ∆W = kF /π.

The total exchange energy per electron (see below) gives a very reasonable approxima-
tion to the true energy, unlike the Hartree approximation.

Note: Many results are easier to derive using the second quantized Form of the hamil-
tonian. We will come back to this.

Exchange Hole and exchange energy
In general in any many-body system (boson or fermion) the pair distribution function can
be defined by

g(r, r′) =
1
ρ(r)

1
ρ(r′)

p(r, r′) (7)

where

p(r, r′) = 〈Ψ|
∑
i�=j

δ(r − ri)δ(r − rj)|Ψ〉 (8)

is the joint probability of simultaneously finding an electron at points r and r′. The function
g(r, r′) is defined so that it is unity in an uncorrelated system and g(r, r′) → 1 at large
distance in any system. The difference from unity g(r, r′)− 1 is defined to be the exchange-
correlation hole. It is straightforward to show from the definition above that∫

dr′(g(r, r′) − 1)ρ(r′) = −1. (9)

In the H-F approximation the exchange hole can be found directly from the orbitals. The
result for Jellium is (see Mahan, Ch. 5)

g↑↓(r, r′) =
1
2

(10)
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Figure 1: Exchange hole gx(r) in the homogeneous electron gas, plotted as a function of
r/rs, where rs is the average distance between electrons in an unpolarized system. The
magnitude decreases rapidly with oscillation, as shown in the greatly expanded right-hand
figure. Note the similarity to the calculated pair correlation function for parallel spins in
Fig. 2.

(i.e. uncorrelated) and

g↑↑(r, r′) =
1
2
[1 − φ(|r − r′|)2], φ(r) =

2
N

∑
k

exp(ikr). (11)

In 3 dimensions, the result is (Mahan, p. 402)

φ(r) =
3
kF r

[sin(kF r) − (kF r)cos(kF r)]. (12)

The function gx is plotted in Fig. 1. Note that gx is always less than 1. See the tail on the
expanded scale at the right.

In k-space one can define the static structure factor which for a homogeneous system
can be written (see Pines and Fulde)

S(k) =
∫
d3rp(r)exp(ikr) (13)

=
1
N

〈Ψ|
∑
i,j

exp(−ik(ri − rj)|Ψ〉 (14)

=
1
N

〈Ψ|ρ−kρk|Ψ〉 (15)

which includes the self-term. For a homogeneous system,

g(r) =
1
N

∑
k

(S(k) − 1)exp(ikr) (16)

For an uncorrelated system S(k) = 1, k �= 0, and S(0) = N , (self term). (Some texts define
S without the self term, so that S(0) = 0, e.g., Mahan, p. 74.)
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In the H-F approximation, there is a simple expression for S(k), given by Pines (p. 75).
For k �= 0, define x = k

2kF
, in which case

S(k) =
3
2
x− 1

2
x3, x < 1 (17)

S(k) = 1, x > 1 (18)

A main point is that S(k) = 1 for k > 2kF , so that the the particles are uncorrelated except
for the Pauli exclusion between states with k < kF .

The exchange energy can be interpreted as the interaction of each electron with its
exchange hole. (In general, there is a similar interpretation for the correlation hole, but this
can NOT be interpreted as the correlation energy, because the kinetic energy also changes
due to correlations. More on this later.)

The exchange energy can be derived in many ways. One is by integrating over the
removal energies for electrons and eliminating the double-counting terms. Another is to
use the exchange hole directly, which is most convenient to do in k-space (Pines, p 68-69;
Philips), and which is most convenient to do after introducing second quantization. The
result is

For example, the exchange energy can be derived as (Pines, p 68-69)

Ex = −0.458
rs

Hartree = −0.916
rs

Ryd. (19)

As Pines points out (p. 77) the exchange energy is directly related to the mean square
density fluctuations, and the attractive exchange energy can be considered as due to the
reduction in the mean square density fluctuations at small k < 2kF .

Beyond Hartree-Fock: Correlations
Here we only give the main points that it is difficult to go beyond H-F. In finite systems, one
finds the configuration-interaction expansion which grows exponentially with the number of
particles. In condensed matter expansions formally diverge (Gellmann-Bruckner). What to
do? Can we simply screen the Coulomb interactions? No. Fixes the disaster at the Fermi
surface, but ruins the cohesive energy.

Correlation can be calculated by many-body techniques. I order to see the effects we
show in Fig. 2 calculated by Monte Carlo methods. Ignore the comparison with models
and only notice the general forms. Note that the effect of correlation on antiparallel spins
is almost negligible (it does not change with rs), whereas it is important for parallel spins.
For large rs the antiparallel spins are kept apart by the repulsive interactions almost as
much as the parallel spins.
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Figure 2: Spin-resolved normalized pair-correlation function gxc(r) for the unpolarized ho-
mogenous electron gas as a function of scaled separation r/rs, for rs varying from rs = 0.8
to rs = 10. Dots, QMC data of Ortiz(1999); dashed line, Perdew–Wang model; solid line,
coupling constant integrated form. From From Bachelet (2000). See Figure 5.5 of Martin
for sources.
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Conclusions

• Electrons at ordinary densities in materials have important effects of correlations

• Hartree reasonable in some ways. Why? Unreasonable in others. Why?

• Hartree-Fock reasonable in some ways. Why? Unreasonable in others. Why?

• Exchange-Correlation Hole: general definitions

• Exchange hole in H-F approximation

• How to go beyond H-F?

Introduction to experiments

• Scattering

• Photoemission


