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OUTLINE

• The many-body electron problem

• Hohenberg-Kohn Theorems

• Kohn-Sham Ansatz

• Functionals for Exchange and Correlation

– LDA - Local Density Approximation

– GGA - Generalized Gradient Approximations

• Solution of the Kohn-Sham ”Schrodinger-like” Equations

• Results: H, He, H2

• Examples of results

• Failures!
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�Many-Body Electron Problem

For fixed positions of the nuclei (adiabatic approximation)
the electron Hamiltonian is

Ĥ = T̂ + V̂ext + V̂int + EII , (1)

where T̂ is the kinetic energy of the electrons, V̂ext is the poten-
tial acting on the electrons due to the nuclei,

V̂ext =
∑
i,I

VI(|ri − RI |), (2)

V̂int is the many-body electron-electron interaction, and EII is
the classical ion-ion interaction.

The total energy is the expectation value

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 ≡ 〈Ĥ〉 = 〈T̂ 〉 + 〈V̂int〉 +

∫
d3rVext(r)n(r). (3)

The ground state wavefunction Ψ0 is the state with lowest
energy; that obeys the symmetries of the particles and all con-
servation laws.
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�Hohenberg-Kohn Theorems

• Theorem I: For any system of electrons in an external po-
tential Vext(r), that potential is determined uniquely, except
for a constant, by the ground state density n(r).

Corollary I: Since the hamiltonian is thus fully determined,
except for a constant shift of the energy, the full many-body
wavefunction and all other properties of the system are also
completely determined!

• Theorem II: A universal functional for the energy E[n] of
the density n(r) can be defined for all electron systems.
The exact ground state energy is the global minimum for
a given Vext(r), and the density n(r) which minimizes this
functional is the exact ground state density.

Corollary II: The functional E[n] alone is sufficient to de-
termine the exact ground state energy and density. Excited
states of the electrons must be determined by other means.

• Comment: Functionals may be arbitrarily complex!
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�Proof of Hohenberg-Kohn Theorems

Proof of Theorem I:
Suppose that there were two different external potentials V

(1)
ext (r)

and V
(2)
ext (r) with the same ground state density n(r). The two

external potentials lead to two different hamiltonians, Ĥ(1) and
Ĥ(2), which have different ground state wavefunctions, Ψ(1) and
Ψ(2), which are hypothesized to have the same density n(r).
Then:

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉. (4)

which leads to

E(1) < E(2) +
∫
d3r{V (1)

ext (r) − V
(2)
ext (r)}n(r). (5)

But changing the labels leads to

E(2) < E(1) +
∫
d3r{V (2)

ext (r) − V
(1)
ext (r)}n(r). (6)

which is a contradiction!

Theorem II (Not proved here) leads to

EHK [n] = T [n] + Vint[n] +
∫
d3rVext(r)n(r)

≡ FHK [n] +
∫
d3rVext(r)n(r) (7)
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�The Kohn-Sham Ansatz

The Kohn–Sham approach is to replace the original difficult
interacting-particle system with an auxiliary system which can
be solved more easily.

The widely used-version of the Kohn–Sham approach is to as-
sume one can find an auxiliary system ofnon-interacting ”elec-
trons” with same density as the true interacting system. The
hamiltonian for this system can be written:

Heff = −
-h2

2me
∇2 + Veff(r). (8)

where

neff(r) =
N∑

i=1
|ψi(r)|2, (9)

and the kinetic energy Teff is given by

Teff = −
-h2

2m

N∑
i=1

〈ψi|∇2|ψi〉, (10)

The Kohn-Sham energy is the sum

Ẽ = Teff +
∫
Vext(r)neff(r)dr+EHartree[neff ]+Exc[neff ], (11)
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�The Kohn-Sham Equations

The ground state can be found by minimizing with respect
to the independent-electron wavefunctions ψi(r)

∂Ẽ[n]

∂ψi(r)
=

∂Teff

∂ψi(r)
+

∂Eother

∂neff(r)

∂neff(r)

∂ψi(r)
= 0 (12)

subject to the orthonormalization constraints

〈ψi|ψj〉 = δi,j (13)

The Lagrange multiplier method constraints leads to the Kohn–
Sham Schroedinger-like equations:

(Heff − εi)ψi(r) = 0 (14)

where the εi are the eigenvalues,

Heff(r) = −
-h2

2me
∇2 + Veff(r). (15)

and

Veff(r) = Vext(r) +
∂EHart

∂neff(r)
+

∂Exc

∂neff(r)
(16)

= Vext(r) + VHart[neff ] + Vxc[neff ]. (17)

The total energy can be written

Ẽ =
N∑

i=1
εi − 1

2

∫
VHart(r)neff(r)dr + (Exc[n] −

∫
(Vxcneff(r)dr)

(18)
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�Exchange-Correlation Functional Exc[n]

The Exchange-Correlation energy is defined by

FHK [n] = T [n] + Vint[n] = 〈T̂ 〉 + 〈V̂int〉
≡ Teff [n] + EHartree[n] + Exc[n] (19)

where

EHartree[n] =
1

2

∫
d3rd3r′

n(r)n(r′)
|�r −�r′| (20)

Thus the exchange-correlation functional is defined to be

Exc[n] = 〈T̂ 〉 − Teff [n] + 〈V̂int〉 − EHartree[n] (21)

Key points:

• Teff is really calculated from the Kohn-Sham orbitals, even
though it can be proven to be formally a fumctional of the
density

• Exc[n] contains all the difficult terms is a functional of n by
the Hohenberg-Kohn Theorem.

• Exc[n] is reasonably approximated as approximately local
– unlike Teff [n] and EHartree[n]. This is the basis of the
widespread use of this approach.
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�Exchange-Correlation Hole

(See, e.g., Many-Particle Physics by Mahan)

Around each electron at point r other electrons are excluded
to form a hole at points r′, nxc(r, r

′).

• The Pauli principle (exchange) causes there to be a hole
with exactly one missing electron compared to the average
density of all electrons including the one under considera-
tion.

• Correlation causes rearrangement but still exactly one miss-
ing electron.

• The energy is given by the interaction with the hole nxc

averaged over all coupling constants e2 (See notes for lecture
2.)

Exc[n] =
∫
d3rn(r)

∫
d3r′

nxc(r, r
′)

|r − r′| (22)
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�LDA - Local Density Approximation

Assume Exc[n] is a sum of contributions from each point in
space depending only upon the density at each point independent
of other points. Then

Exc[n] =
∫
d3rn(r)εxc(n(r)) (23)

where εxc(n) is the x-c energy per electron

• Since εxc(n) is assumed to be universal, must be the same
as for homogeneous electrons of density n.

• Exchange (e.g., Aschroft and Mermin, p. 411)

εx(n) = −0.458

rs
Hartree, (24)

where rs is the average distance between electrons given by
4π
3 r

3
s = 1

n .

• Correlation found by:

– RPA approximation - good at high density

– Interpolation between low and high density - Wigner
(1934), Lindberg and Rosen (1970), . . .

– Essentially exact Monte Carlo Calculations done by
Ceperley and Alder, 1980
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�Correlation Energy vs Density
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Figure 1: Correlation energy of an unpolarized homogeneous electron gas as a
function of the density parameter rs. The most accurate results available are
quantum Monte Carlo calculations; the curve labelled “Ceperley–Alder” is
the work of those authors fitted to the interpolation formula of Vosko, Wilk,
and Nusair; the Perdew–Zunger (PZ) fit is almost identical on this scale. In
comparison are shown the Wigner interpolation formula, the RPA, and an
improved many-body perturbation calculation taken from Mahan, where it
is attributed to L. Lindgren and A. Rosen. Figure provided by H. Kim.
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�Kohn-Sham Equations in the LDA

In the LDA the potential in Kohn-Sham equations is found
as a simple derivative:

Heff(r) = −
-h2

2me
∇2 + Veff(r). (25)

and

Veff(r) = Vext(r) +
∂EHart

∂neff(r)
+

∂Exc

∂neff(r)
(26)

= Vext(r) + VHart[neff ] + Vxc[neff ]. (27)

where

Vxc(r) =
∂Exc

∂neff(r)
=
∂neff(r)εxc(neff(r))

∂neff(r)
(28)

The equations are solved self-consistently with the density which
results from the eigenfunctions of the independent electron equa-
tions

neff(r) =
N∑

i=1
|ψi(r)|2, (29)

A
¯
pplication to Jellium

The eigenvalues of Kohn-Sham Eq. are simply the non-
interacting bands εk =

-h2

2mk
2, shifted by the average value of

Vxc. The total energy is the exact energy by definition.
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�LSD - Local Spin Density Approx.

• It is straightforward to generalize the Hohenberg-Kohn and
Kohn-Sham approaches to functions of two densities n↑ and
n↓.

• The exchange energy is easily generalized since exchange is
always a sum of terms for ↑ and ↓ spins.

• Correlation involves both spins, so it must be parametrized
in terms of both n↑ and n↓.

• Thus we are led to the LSD form Exc[n↑, n↓]. All widely
used forms are based upon fitting the energies found by
Quantum Monte Carlo calculations for interacting electrons
done by Ceperley and Alder.

• Parametrized forms given by Perdew and Zunger, 1981, and
Vosko, Wilk, and Nusair, 1980.
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�GGA - Generalized Gradient Approx.

• Exchange and Correlation are not really local.

• Next approximation: consider εxc[n] a function of the den-
sity and the gradient of the density at each point

• The function is expressed in terms of the reduced density
s = |∇n|

2kF n , where kF = (3π2n)1/3.

• Now widely used especially in chemistry because the GGA
improve the estimates of dissociation energies. The GGA
lowers the energy of systems with larger gradients. It tends
to lower the energy to dissociate a molecule into parts.

• Discussion of forms in paper:
J. P. Perdew and Kieron Burke, ”Comparison Shopping
for a gradient-corrected density functional”, Int. J. Quant.
Chem. 57, 309 (1996).

• Programs for the LDA and various GGA’s are available
from:
http://www.phy.tulane.edu/ kieron/dft.html
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�Typical Results

From Gunnarsson and Jones, Rev. Mod. Phys. 61, 689
(1989).

HF LSDA Exp
H -1.0 -0.98 -1.0
Li -14.866 -14.706 -14.957
H2(binding) -3.64 -4.91 -4.75
Li2(binding) -0.17 -1.01 -1.07

• Energies for solids like Si are in excellent agreement with
experiment, e.g., lattice constant predicted: 5.40, Experi-
ment: 5.43 Angstroms.

• Occupied bands typically very good

• Band gaps too low (Si: 0.5 eV, vs. 1.2 eV exp.)

• Failures: In strongly correlated systems like transition metal
oxides, predicts metals when real material is a wide gap in-
sulator.
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