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Second Quantization and Elementary Excitations: Phonons and Electrons
References: Second quantization: Mahan 1.1,1.2,1.3A, Pines p. 18, p. 67; Fetter and

Walecka; Phillips Ch 3; many other texts.

Elementary Excitations Condensed Matter I: Nuclear Vibrations - Phonons
References: Phillips, Sec. 10.1, 10.2; Pines, Ch. 2; Doniach, Ch. 1; class notes.
In the Adiabatic Approximation, we have shown the equation for nuclear motion can

be written:

ĤNχm({RI}) = [
∑

I

-h2

2MI
∇2

I + E0({RI})]χm({RI}) = Emχm({RI}) (1)

Define displacements of the atoms from their equilibrium positions, RI = R0
I + uI , and

expand the potential energy in powers of uI ,

E0({RI}) = E0({R0
I}) +

1
2

∑
Dαβ

IJ uα
I uJβ + . . . (2)

where the linear terms vanish, the D’s are second derivatives, etc. The exact eigenstates
can be written as χm({uI}).

Harmonic Approximation
In the harmonic approximation, where we neglect all higher order derivatives, the equations
are exactly soluble as independent oscillators, even though it is a strongly coupled system
of nuclei. This is a very good approximation at low temperatures for all solids except H
and He, where zero point motion is large. (Note that the Lindeman criterion for melting is√〈u2〉 ≈ 0.2a, where a is a typical interatomic distance, so the harmonic approximation is
often good for many purposes up to the melting temperature.

The quantum system can be treated by solving the classical equations of motion for
the classical oscillator eigenmodes and quantizing the oscillators. From the Bloch theo-
rem the eigenmodes can be classified by the k, e.g., for one atom per cell, (considering a
normalization to a volume of N unit cells)

uI =
1√
N

∑

k

uke
ikR0

I ; pI = M
duI

dt
=

1√
N

∑

k

pke
ikR0

I , (3)

The classical hamiltonian becomes

H =
∑

k

[
1

2M
p∗kpk +

M

2
ω2

ku
∗
kuk

]
. (4)

where

Mω2
k ≡

∑

J

DIJeik(R0
I−R0

J ). (5)

Defining new operators

Qk =
(

Mωk

2-h

)1/2

uk, Pk =
(

1
2-hMωk

)1/2

uk, (6)



2 561 F 2005 Lecture 4

the hamiltonian becomes

H =
∑

k

-hωk [P ∗
k Pk + Q∗

kQk] . (7)

Quantizing the independent oscillators,the creation and annihilation operators are

a†k = (Q∗
k − iPk), ak = (Qk + iP ∗

k ), (8)

and the hamiltonian becomes

H =
1
2

∑

k

-hωk

[
a†kak + aka

†
k

]
=

∑

k

-hωk

[
a†kak +

1
2

]
. (9)

Note that the order of the operators is crucial!
The state of the nuclei in the harmonic approximation is fully specified by the number

of quanta in each of the eigenmodes modes of vibration. Since the quantized modes are
bosons, the many body state is the symmetrized combination, which is simply a product
wavefunction.

It is straightforward to show that in d dimensions there are d modes that have frequency
ω that vanishes as k → 0.

This is the first example of ”elementary excitations”. This gives the exact many-body
description in the harmonic approximation, and it defines a complete set of eigenstates
which are a convenient basis for describing the system even when anharmonic interactions
are included.

Collective Excitation

A phonon at a particular k, ω is a collective excitation in which all the nuclei move
in unison. The harmonic case is the special case where the equations for this collective
excitation are easily solved to find non-interacting excitations (phonons). In general this is
not the case!

Qualitative examples of phonons

See Phillips Ch. 10 for the example of a chain of atoms.
Since the nuclei are charged, long ranged Coulomb interactions lead to longitudinal

plasma modes with ω that is finite as k → 0 – unless the electrons ”screen” the long range
interactions. This happens in a metal, and a homework problem is to derive the qualitative
result that the phonons properly have accoustic modes with ω ∝ k, and qualitatively relate
the sound velocity to the Fermi velocity.

Anharmonic Interactions

In the presence of anharmonic interactions, the problem is no longer exactly soluble.
The energy can always be written in an expansion

E0({RI}) = E0({R0
I}) +

1
2!

∑

IJ

DIJuIuJ +
1
3!

∑

IJK

DIJKuIuJuK + . . . , (10)
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where we have dropped the vector index for simplicity. It is most advantageous to work in
the basis of the elementary excitations, (the phonons) since the harmonic terms are diagonal
in this basis. Since the u′s are simply related to the creation and annihilation operators,
it is straightforward to write the cubic term in terms of the a+

k and ak. This is left as an
exercise (not required) to develop the perturbation expressions, and to interpret the terms
as the various possible ways for a phono to scatter while creating or destroying another
phonon. Finally, one can write down the temperature dependent factors that show the
general trends.

Elementary Excitations Condensed Matter II: Electronic Excitations
References: Phillips Ch. 4,5; Mahan, ch 1.2, Pines Ch 3; class notes.
Second Quantized Form of Hamiltonian

Ĥ =
∑
pσ

εpc
+
pσcpσ +

1
2

∑

k

Vk

∑

pσp′σ′
c+
p+kσc+

p′−kσ′cp′σ′cpσ (11)

=
∑
pσ

εpc
+
pσcpσ +

1
2

∑

k

Vk(ρ−kρk −N), (12)

where Vk = 1
Ω

4πe2

k2 and ρk =
∑

pσ c+
p+kσcpσ. In general one always has sums of the form

1
Ω

∑
k → 1

(2π)D

∫
dDk, where D is the dimension. (We will sometimes set the normalization

volume Ω = 1.)
This hamiltonian is valid only for homogeneous Jellium because we have assumed the

single particle terms are diagonal in momentum index p. However, a general form can be
made for for atoms, crystals, and molecules if one changes only the single particle part,
since the electron-electron interactions always have the Coulombic form shown.

For example, the exchange energy can be derived as

Ex =
1
2

∑

k

Vk

∑

pσp′σ′
〈0|c+

p+kσc+
p′−kσ′cp′σ′cpσ|0〉 (13)

= − 1
N

(−1
2

∑

k,k′,σ
Vk′)〈ρk+k′,σρk,σ〉 (14)

=
1
N

(−1
2

∑

k,k′<kF

Vk−k′) = −0.916
rs

Ryd. (15)

Hartree-Fock Theory for Jellium

We have previously derived the form of exchange in the first-quantized notation. The
key ingredients were the pair distribution function defined by

g(r, r′) =
1

ρ(r)
1

ρ(r′)
p(r, r′) (16)

where

p(r, r′) = 〈Ψ|
∑

i6=j

δ(r − ri)δ(r − rj)|Ψ〉 (17)
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is the joint probability of simultaneously finding an electron at points r and r′.
In second quantized form in terms of the elementary excitations (plane waves) it is most

convenient to work in k-space. For a homogeneous system one can define the static structure
factor S(k) (see Pines and Fulde)

S(k) =
∫

d3rp(r)exp(ikr) (18)

=
1
N
〈Ψ|

∑

i,j

exp(−ik(ri − rj)|Ψ〉 (19)

=
1
N
〈Ψ|ρ−kρk|Ψ〉 (20)

which includes the self-term. In terms of creation and annihilation operators, this may be
written

S(k) =
1
N
〈0|

∑
pσ

c†p−kσcpσ

∑

p′σ′
c†p′+kσ′cp′σ′ |0〉, (21)

which after some algebra can be shown to be

S(k) = Nδk=0 +
1
N

∑
pσ

(1− np−kσ)npσ, (22)

where is the occupation npσ = 1 for k < kF and 0 for k > kF . (See Pines p 75 and class
notes.)

Thus the Hartree-Fock structure factor is very simple in k space (See Pines p 75 and
class notes.) For k 6= 0, define x = k

2kF
, in which case

S(k) =
3
2
x− 1

2
x3, x < 1 (23)

S(k) = 1, x > 1 (24)

A main point is that S(k) = 1 for k > 2kF , so that the the particles are uncorrelated except
for the Pauli exclusion between states with k < kF .

For a homogeneous system, one can Fourier transform this expression

g(r) =
1
N

∑

k

(S(k)− 1)exp(ikr) (25)

to recover the same results as derived before for the exchange hole in real space. (Note: For
an uncorrelated system S(k) = 1, k 6= 0, and S(0) = N , (self term). Some texts define S
without the self term, so that S(0) = 0, e.g., Mahan, p. 74.)

Beyond Hartree-Fock: Correlations
In the class notes we give the main reasons why it is difficult to go beyond H-F. In finite
systems, one finds the configuration-interaction expansion which grows exponentially with
the number of particles. In condensed matter expansions formally diverge (Gellmann-
Bruckner). This is easily seen in Jellium just by examining the integrals. What to do?
This is the subject of the many-body theory of the course.

Conclusions
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• Elementary excitations: Phonons and electrons

• Second quantization convenient for specifying hamiltonian and interactions

• Creation and annihilation operators defined to create and annihilate eigenstates of a
single particle hamiltonian: harmonic phonons; non-interacting electrons

• Nuclear motion is a strongly interacting problem - the motion of nuclei is highly
correlated - but in the harmonic approximation one can transform to non-interacting
elementary excitations - phonons - a phonon is a collective excitation of the nuclei

• Interacting electron hamiltonian

• Structure factor and Exchange hole in Hartree-Fock approximation revisited in second
quantization

• How to go beyond Hartree-Fock? Perturbation expansion in the interaction (∝ e2)
formally diverges - can be summed in a convergent way - leads to non-analytic behavior
(as it must!)

• Gell-Mann Brueckner results; Wigner interpolation formula; improved results


