561 Fall 2005 Lecture 5 - modified $9 / 15 / 05$ to correct small errors and typos Linear Response Theory: Response Functions - Retarded Green's Functions
References: P. C. Martin; Mahan 2.9 and 3.3; Fetter 5; Doniach; nice short summary of quantum formulation in Phillips, Ch. 8.

1. Classical Oscillator with thermal damping force

Consider an oscillator driven by external force (Following P. C. Martin, Ch. 1),

$$
\begin{equation*}
m \ddot{x}(t)+m \omega_{0}^{2} x(t)=F^{i n t}(t)+F^{e x t}(t) \tag{1}
\end{equation*}
$$

where $F^{\text {int }}$ represents internal forces from parts of the system not explicitly taken into account - random forces that act to bring the oscillator into equilibrium. The oscillator is driven from equilibrium by $F^{e x t}(t)$ leading to $\left\langle F^{i n t}(t)\right\rangle \neq 0$. The forces always tend to restore equilibrium on the average and an approximate form is a friction term $\left\langle F^{\text {int }}(t)\right\rangle=$ $-m \gamma \dot{x}(t)$ with $\gamma>0$. Then the time evolution of the average of x is given by

$$
\begin{equation*}
m\left[\frac{d^{2}}{d t^{2}}+\omega_{0}^{2}+\gamma \frac{d}{d t}\right]\langle x\rangle(t)=F^{e x t}(t) \tag{2}
\end{equation*}
$$

A Green's function for this system is defined by the response to a delta function source (We will use the same symbol χ for both the in time and in frequency, with the arguments shown ($\chi(t)$ or $\chi(\omega)$ when we need to differentiate the functions.)

$$
\begin{equation*}
m\left[\frac{d^{2}}{d t^{2}}+\omega_{0}^{2}+\gamma \frac{d}{d t}\right] \chi\left(t-t^{\prime}\right)=\delta\left(t-t^{\prime}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle x\rangle(t)=\int_{-\infty}^{\infty} d t^{\prime} \chi\left(t-t^{\prime}\right) F^{e x t}\left(t^{\prime}\right) \tag{4}
\end{equation*}
$$

Eq. 3 does not uniquely specify the Green's function; depending on boundary conditions, one can specify the different Green's functions:

- Retarded - Needed for causal response functions - $\chi^{A}\left(t-t^{\prime}\right)=0$ for $t-t^{\prime}<0$
- Advanced - $\chi\left(t-t^{\prime}\right)=0$ for $t-t^{\prime}>0$
- Time-ordered - Useful for treating particle interactions in perturbation expansions (more on this later)

The response to a single frequency driving force $F^{e x t}(t)=F^{e x t}(0) \exp (i \omega t)$ is given by the Fourier transform

$$
\begin{equation*}
\chi(\omega)=\int_{-\infty}^{\infty} d t \chi(t) e^{i \omega t} ; \quad \chi(t)=\int_{-\infty}^{\infty} \frac{d \omega}{2 \pi} \chi(\omega) e^{-i \omega t} \tag{5}
\end{equation*}
$$

For the damped oscillator example,

$$
\begin{equation*}
\chi(\omega)=\frac{1}{m}\left[\frac{-1}{\omega^{2}-\omega_{0}^{2}+i \gamma \omega}\right] \tag{6}
\end{equation*}
$$

We show below that this is an example of a causal retarded function.

2. Retarded Causal Green's Functions (Response Functions) - complex analysis

(Note: Complex analysis holds for both classical and quantum response functions. The description of the classical oscillator follows P. C. Martin, Ch. 1; it gives a useful physical picture but is not essential to derive the quantum expressions.)

Consider $\chi(z)$ as a complex function of a complex frequency z. A retarded function satisfies $\chi\left(t-t^{\prime}\right)=0$ for $t-t^{\prime}<0$,

$$
\begin{equation*}
\chi(\omega)=\int_{-\infty}^{\infty} d t \chi(t) e^{i \omega t} . \tag{7}
\end{equation*}
$$

This equation can be considered the definition of $\chi(\omega)$ for complex ω, which we sometimes write as $\chi(z)$ to avoid confusion with teh cases where ω is a real frequency. The integral is well-defined for $\operatorname{Im} \omega>0$, since we only need to consider $t>0$ and the exponential factor converges for large $\operatorname{Im\omega }>0$. Thus a physical, causal response function is analytic in the upper plane $(\operatorname{Im\omega } \boldsymbol{>})$.

- There are poles in $\chi(\omega)$ only in lower half of complex plane ($\operatorname{Im} \omega<0$) no matter how complicated the system and the functional form of $\chi(\omega)$. For example, the response function Eq. 6 for the damped oscillator can readily be shown to have two poles at $\pm \omega_{0}-i \eta$ where $\operatorname{Im} \eta>0$. Show they this is related to the causal assumptions in the formulation of the damping. in be worked out easily
- Using Cauchy Relations and closing the contour in upper plane (where χ is analytic) leads to

$$
\begin{equation*}
\chi(z)=\frac{1}{2 \pi i} \int_{-\infty}^{\infty} d \omega \frac{\chi(\omega)}{\omega-z}, \quad \operatorname{Im} z>0 \tag{8}
\end{equation*}
$$

where the integral is for ω on the real axis (i.e., involves the physically measurable $\chi(\omega)$ for real frequencies ω. The analytic continuation of Eq. 7 to $\operatorname{Imz}<0$ gives $\chi(z)=0$ since z is outside the contour which is closed in the upper plane.

- The fact that $\chi(z)=0$ for z approaching the real axis from below is one of the ways to derive the famous Kramers-Kronig relations for real frequency ω valid for all causal response functions (see many texts for details)

$$
\begin{equation*}
\operatorname{Re} \chi(\omega)=-\frac{1}{\pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{\operatorname{Im} \chi\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}}, \quad \operatorname{Im} \chi(\omega)=\frac{1}{\pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{\operatorname{Re} \chi\left(\omega^{\prime}\right)}{\omega-\omega^{\prime}} . \tag{9}
\end{equation*}
$$

- Interpretation of the complex response for $\chi(\omega)$ for real ω :
- Rex (ω) is the real response to a perturbation - in-phase - no energy loss
- $\operatorname{Im} \chi(\omega)$ is the imaginary response to a perturbation - out-of-phase - represents energy loss
- Sum rules: Since particles always act as free particles at high enough frequency, it follows that $\chi(z) \rightarrow-\frac{1}{m z^{2}}$. Using the first KK relation for Re χ it follows that (straightforward to show by expanding energy denominator in KK integrand)

$$
\begin{equation*}
\frac{1}{m}=\frac{1}{\pi} \int_{-\infty}^{\infty} d \omega^{\prime} \operatorname{Im} \chi\left(\omega^{\prime}\right) \omega^{\prime} \tag{10}
\end{equation*}
$$

- Static Response Function: for a static perturbation $\langle x\rangle=\chi(\omega=0) F^{e x t}$ to linear order. Using the KK relation we find

$$
\begin{equation*}
\chi(\omega=0)=\frac{1}{\pi} \int_{-\infty}^{\infty} d \omega^{\prime} \frac{\operatorname{Im} \chi\left(\omega^{\prime}\right)}{\omega^{\prime}} . \tag{11}
\end{equation*}
$$

3. Quantum Theory for Retarded Causal Green's Functions

(Following Phillips Sec 8.3; more details are given in Fetter, Ch. 5, sect 13, Mahan 2.9 and 3.3)

Consider a system described by a hamiltonian $H=H_{0}+W(t)$ where $W(t)$ is an external perturbation turned on at some time. In the Schrodinger representation, the operators are independent of time and the wavefunction $\Psi(t)$ evolves. For ensembles one can work with the density matrix $\rho(t)$ and the expectation value of an observable Y is given by

$$
\begin{equation*}
\langle Y\rangle(t)=\operatorname{Tr}(\rho(t) Y), \tag{12}
\end{equation*}
$$

with ρ the density matrix in the Schrodinger representation, which satisfies the equation

$$
\begin{equation*}
i \hbar \frac{d \rho(t)}{d t}=[H, \rho(t)]=\left[H_{0}+W(t), \rho(t)\right] \tag{13}
\end{equation*}
$$

where $[A, B]=A B-B A$ is the commutator.
It is easiest to work in the interaction representation in which an operator $\widehat{O}(t)$ is defined by

$$
\begin{equation*}
\widehat{O}(t)=e^{\frac{+i H_{0} t}{\bar{h}}} O e^{\frac{-i H_{0} t}{\bar{h}}}, \tag{14}
\end{equation*}
$$

where O is a time-independent operator in the Schrodinger picture. Then

$$
\begin{equation*}
\langle\widehat{Y}(t)\rangle=\operatorname{Tr}(\widehat{\rho}(t) \widehat{Y}(t)), \tag{15}
\end{equation*}
$$

where the evolution is given by

$$
\begin{equation*}
i \hbar \frac{d \widehat{\rho}(t)}{d t}=[\widehat{W}(t), \widehat{\rho}(t)] \tag{16}
\end{equation*}
$$

or the formal solution

$$
\begin{equation*}
\widehat{\rho}(t)=T \exp \left(-\frac{i}{\hbar} \int_{-\infty}^{t}\left[\widehat{W}\left(t^{\prime}\right), \widehat{\rho}\left(t^{\prime}\right)\right] d t^{\prime}\right) . \tag{17}
\end{equation*}
$$

The time ordering operator T specifies how the exponential is to be interpreted. (See Mahan, Fetter and other references for a careful exposition.) To lowest order it is simply

$$
\begin{equation*}
\widehat{\rho}(t)=\widehat{\rho}_{0}(t)-\frac{i}{\hbar} \int_{-\infty}^{t}\left[\widehat{W}\left(t^{\prime}\right), \widehat{\rho}_{0}\left(t^{\prime}\right)\right] d t^{\prime} \tag{18}
\end{equation*}
$$

The expectation value is given by

$$
\begin{equation*}
\langle\widehat{Y}(t)\rangle=\langle\widehat{Y}(t)\rangle_{0}-\frac{i}{\hbar} \int_{-\infty}^{t} \operatorname{Tr}\left(\widehat{Y}(t)\left[\widehat{W}\left(t^{\prime}\right), \widehat{\rho}_{0}\left(t^{\prime}\right)\right] d t^{\prime}+\ldots\right. \tag{19}
\end{equation*}
$$

Cyclic permutation leads to the desired result:

$$
\begin{equation*}
\delta\langle\widehat{Y}(t)\rangle=\langle\widehat{Y}(t)\rangle-\langle\widehat{Y}(t)\rangle_{0}=\int_{-\infty}^{t} \chi_{Y W}\left(t, t^{\prime}\right) d t^{\prime} \tag{20}
\end{equation*}
$$

where the response function for Y due to W is given by

$$
\begin{equation*}
\chi_{Y W}\left(t, t^{\prime}\right)=-\frac{i}{\hbar}\left\langle\left[\widehat{Y}(t), \widehat{W}\left(t^{\prime}\right)\right]\right\rangle_{0} \tag{21}
\end{equation*}
$$

(Note: Phillips defines χ without the factor $-\frac{i}{h}$, but it is only with the factor that that χ has the expected properties, e.g., that $\operatorname{Im} \chi(\omega)$ is the energy loss function.) Here $\langle\ldots\rangle_{0}$ denotes expectation value with the unperturbed $\widehat{\rho}_{0}$, and the response function is a commutator of the response $\widehat{Y}(t)$ and the perturbation $\widehat{W}\left(t^{\prime}\right)$ in the interaction representation.

4. Example: density-density response function

Consider the problem of charged particles in an external potential

$$
\begin{equation*}
W(t)=\int d^{3} r \hat{n}(r) e \phi^{e x t}(r, t) \tag{22}
\end{equation*}
$$

where $\hat{n}(r)$ is the density operator, e the charge, and $\phi^{e x t}(r, t)$ the perturbing potential that is explicitly time-dependent.

To linear order the response of the ground state to the perturbation is

$$
\begin{equation*}
\delta\langle\widehat{n}(r, t)\rangle=-\frac{i}{\hbar} \int_{-\infty}^{t} d t^{\prime} \int d^{3} r^{\prime} e \phi^{e x t}\left(r^{\prime}, t^{\prime}\right)\left\langle\left[\widehat{n}\left(r^{\prime}, t^{\prime}\right), \widehat{n}(r, t)\right]\right\rangle_{0} \tag{23}
\end{equation*}
$$

If the density-density response function is defined by (here Θ is the step function)

$$
\begin{equation*}
\chi_{n n}\left(r t, r^{\prime} t^{\prime}\right)=-\frac{i}{\hbar} \Theta\left(t-t^{\prime}\right)\left\langle\left[\widehat{n}\left(r^{\prime}, t^{\prime}\right), \widehat{n}(r, t)\right]\right\rangle_{0}, \tag{24}
\end{equation*}
$$

then the response of the system to linear order is

$$
\begin{equation*}
\delta\langle\widehat{n}(r, t)\rangle=-\frac{i}{\hbar} \int_{-\infty}^{\infty} d t^{\prime} \int d^{3} r^{\prime} \chi_{n n}\left(r t, r^{\prime} t^{\prime}\right) e \phi^{e x t}\left(r^{\prime}, t^{\prime}\right) \tag{25}
\end{equation*}
$$

We will return to the density-density correlation function in the analysis of the dielectric function.

Linear Response Theory - continued next time:

Example of phonons - also see Homework 2
General properties of Green's functions
Fluctuation-dissipation theorem
Scattering spectra and experiments

