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561 Fall 2005 Lecture 5a
Continued from previous lecture

Linear Response Theory: Response Functions - Retarded Green’s Functions
and Fluctuations

5. General definition of response functions
The examples before can be written in general form of retarded Green’s functions fol-

lowing notation in many texts (See Fetter, Mahan, Doniach.) We can also use the fact that
all observable quantities depend only upon the time difference t− t′ to write the expressions
with t − t′ → t. The retarded and advanced functions are (We will use either χ or GR for
retarded causal functions in the notes.)

GR(t) = −iΘ(t)〈[Â(t), B̂(0)]〉 (1)
GA(t) = −iΘ(−t)〈[Â(t), B̂(0)]〉 (2)

Thus

GR(ω) =
∫ ∞

−∞
dt GR(t)eiωt = −i

∫ ∞

0
〈[Â(t), B̂(0)]〉eiωtdt (3)

is well defined for Im ω > 0 in the upper half plane.
Time ordered functions ar a combination of GR and GA as is discussed later.
5a. Example - Phonons
The case of nuclear displacements serves as an example. This example applies to any

case of coupled variables and it is exactly soluble for harmonic phonons.
An externally applied force causes an perturbation in the energy−∑

J FJuJ = −∑
k FJuk.,

where k labels the normal modes. Thus to linear order the response of the nucleus I is

〈uI(t)〉 =
∫ t

−∞
GR

IJ(t− t′)[−FJ(t′)]dt′, (4)

where

GR
IJ(t) = −iΘ(t)〈[ûI(t), ûJ(0)]〉0. (5)

6. Dissipation and causal response functions
The causal response expression χ(ω) was defined in the previous lecture notes and it was

shown the the real and imaginary parts obey the KK relations, and other conditions. Here
we show that for real frequencies ω the imaginary part Im χ(ω) of the response denotes
energy loss. This is the same property that is used in many well-know examples in the
dielectric function, mechanical loss, . . . The general point is that dissipation is the power
lost to the environment. For a response Y due to a driving force W , the rate of energy
loss is dE/dt = 〈WdY/dt〉. For example, for displacement of atoms due to forces is the
familiar force times velocity, dE/dt =

∑
I〈FIduI/dt〉. This is general and holds for classical

or quantum problems.
The case of nuclear displacements serves as an example that can be extended to other

cases. In terms of the response function χ, this becomes

dE

dt
=

∑

I

〈FIduI/dt〉 = −
∑

IJ

FI(t)
∫ ∞

−∞
d

dt
GR

IJ(t− t′)FJ(t′)dt′. (6)
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If F is a real force with frequency ω, F (t) = Fcos(ωt) = (F/2)(eiωt + e−iωt), then

dE

dt
=

∑

I

〈FIduI/dt〉 = −1
4

∑

IJ

FI

[
−iωGR

IJ(ω) + iωGR
IJ(−ω)

]
FJ . (7)

Thus

dE

dt
= −1

2

∑

IJ

FI

[
Im ωGR

IJ(ω)
]
FJ . (8)

It is straightforward to show that Im GR(ω) is odd in ω and −ωIm GR
IJ(ω) > 0 for all ω.

(See P. C. Martin, p. 25-27 for nice discussion.)
7. Fluctuations in a quantum system
The causal response functions Gr(t) or χ(t) are non-zero only for times t > t′. Here we

define analogous expressions valid for all times; these are dynamical correlation func-
tions and the spectrum defines the Lehman representation. Later we show the relation
to causal response functions and we derive a form of the fluctuation-dissipation
(Nyquist) theorem.

Using the fact that all observable quantities depend only upon the time difference t− t′,
and considering Y and W as observables on an equal footing, we see that a closely related
expression can be recognized as the correlation function of Y and W separated by time
t. Defining the correlation function as S (the same notation as Phillips, Sec. 8.3.1) and
writing out the expectation value, we find

S
Ŷ W

(t, 0) = 〈|Ŷ (t)W (0)|〉0 =
1
Z

∑
n

〈n|e−βHeiHtY e−iHtW |n〉, (9)

where the sum over n is over a complete set of states, the partition function is Z =∑
n〈n|e−βH |n〉, and we have used Ŵ (0) = W . (The expression appears to not be sym-

metric in Y and W ; this is convenient and we show below that the expressions are in fact
symmetric.)

The meaning of this expression can be appreciated by cyclically permuting the operators
so that W is on the left; inserting a complete set of states we find

S
Ŷ W

(t, 0) =
1
Z

∑
nm

〈n|We−βH |m〉〈m|eiHtY e−iHt|n〉, (10)

and if we consider the exact eigenstates of the hamiltonian

S
Ŷ W

(t, 0) =
1
Z

∑
nm

e−βEm〈n|W |m〉〈m|Y |n〉ei(Em−En)t. (11)

Finally, the Fourier transform shows that S
Ŷ W

(ω) is the spectrum of excitations (the exact
spectrum in principle if H is the exact hamiltonian) weighted by thermal probability factors
and matrix elements,

S
Ŷ W

(ω) =
∫ ∞

−∞
dtS

Ŷ W
(t, 0)eiωt = 2π

1
Z

∑
nm

e−βEm〈n|W |m〉〈m|Y |n〉δ(Em−En+ω).(12)
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If we consider S
WŶ

(0, t) = 〈WŶ (t)〉0 with Ŷ (t) and W interchanged, similar steps lead
to the same expression as 12 except that e−βEm → e−βEn . Using the fact that the delta
function is non-zero only if E − n = Em + ω, we find

S
WŶ

(0, t) = e−βωS
Ŷ W

(ω). (13)

7a. Lehman representation
The Lehman representation specifies the excitation spectrum in a way that can be used

to compute all the correlation functions and Green’s functions. There is not a standard
notation because each case involves the matrix elements of the specific operators.

The form given in 12 shows the basic point: except for the matrix elements all factors in
the equation are positive, and S

Ŷ W
(ω) represents the spectrum of excitations. For example,

if we let the temperature go to zero, we find

1
2π

S
Ŷ W

(ω) →
∑
n

〈0|Y |n〉〈n|W |0〉δ(E0 −En + ω), (14)

which is the weighted density of states of the exact spectrum of excitations.
7b. Relation of dynamical correlation functions and causal response func-

tions
The relation to the causal response function can now be written simply. Using the

definition the the function is non-zero only for times t > t′, we can rewrite the expressions
from the previous lecture as (here the 1/-h factor is not written explicitly)

χY W (t, 0) = −iΘ(t)〈[Ŷ (t), Ŵ (0)]〉0, (15)

and

χY W (ω) =
−i

Z

∑
nm

〈n|W |m〉〈m|Y |n〉
[
e−βEm − e−βEn

] ∫ ∞

0
dtei(Em−En+ω)t (16)

=
1
Z

∑
nm

〈n|W |m〉〈m|Y |n〉e
−βEm − e−βEn

Em − En + ω
, (17)

which is well-defined for Im ω > 0. Note that this expression his has a nice physical
interpretation!

In terms of the correlation functions (simply related to the Lehman representation), It
is straightforward to show that

Im χY W (ω) =
−1
2

(1− e−βω)S
Ŷ W

(ω), (18)

for ω on the real axis.
7c. Fluctuation-dissipation theorem (Nyquist theorem)
The results above establish the fluctuation-dissipation (Nyquist) theorem in a general

form. We have shown that the imaginary part of the response function measures dissipation
and the correlation function function measures fluctuations. Thus 18 is the fluctuation-
dissipation (Nyquist) theorem. The expression is the same as Phillips Eq. 8.48 except that
Phillips does not carefully specify the real and imaginary parts.

8. Scattering experiments and Green’s functions
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A very important experimental approach in studying physical systems is scattering of
particles in all fields of physics. In condensed matter the most important are neutron
scattering, Raman scattering of photons, electron scattering, . . . .

The relations follow from the analysis given above. Consider the expression given in
Eqs. 12, 14, and 17. Each of these is in fact a ”golden rule” expression for a scattering
cross section; in these cases the operators Y and W are the same and we will omit them.
Examples will be given in class.

A general feature can be derived from the expressions. The cross section always has the
form (see Eq. 18)

S(ω) =
−2

1− e−βω
Im χ(ω), (19)

which leads to

S(ω) = [n(ω) + 1](−2Im χ(ω)), ω > 0, (20)

and

S(ω) = n(|ω|)(−2Im χ(|ω|)), ω < 0, (21)

where

n(ω) =
1

eβω − 1
(22)

Thus one finds the ”Bose factors” for Stokes and anti-Stokes scattering without assuming
bosons!

Conclusions

• Causal response describe physical response to perturbations

– Described by retarded Green’s functions

– Behavior in complex frequency plane

– K-K relations; Sum rules

– Note: we will use related time ordered Green’s function later. They do not have
same analytic form.

• Relations to correlation functions

– Lehman representation - spectra in terms of exact excitations of many-body
system

– Scattering spectra

– Fluctuation-dissipation theorem


