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561 Fall 2005 Lecture 5b

Dielectric Response Function
References: Phillips Ch. 8; Pines, 121 ff. See also Mahan, Sec. 5.5; Fetter, p 151 ff;
Doniach Sec. 6.4; P. C. Martin

1. The most important response function in condensed matter

Directly related to electron-electron interactions, correlations, total energy in solids
Determines response to charged particles, electrical conductivity, optical properties

Directly measurable

2. Definition

If D is the external applied field and E is the internal field, then the standard notation
of electrodynamics is

D=¢E, or E=¢ 'D=D+47P =D+ (¢ ! - 1)D), (1)

where 47P is the response of the medium.

Therefore P = (1/47)(e™* — 1)D and (1/4m)(e~! — 1) is the response function for
the charge due to an external electric field. (Note: € is also a response function (to
internal fields) — more latter.)

For longitudinal fields in an isotropic medium, this can also be written in terms of
scalar potentials

Vint = € "Veat; Vear = €Vine. (2)
In terms of charge densities,

0p = Opext + 0pint- 3)
Combining above, we find

R

5Pint = (6 - 1)m%xt- (4)

3. Density-Density Response Function

Define (¢~ !(k,w) —1) = 4272621_[R(k,w), where IT% = 76((5\[22)

Thus 1T (k,w) = %DR(k, w), where D' is the retarded density-density response func-
tion defined before in notes number 5.
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e Explicitly at T'= 0, and using the density operator p; = >, e~ thri,
(k) = S 10 | o~ )
’ - Ey—E,+w+in E,—Ey+w-+in]’
and
ImIT®(k, w) —WZ 10| p|m)|? [0(Eo — Em + w) — 6(Em — Eo +w)], (6)
which is the same as Pines (3-110).
4. Dynamic Structure Factor
e At T =0:
h R
S(qaw) = —;Imﬂ (qaw)a w>0
S(qw) =0, w<0 (7)
e It is then easy to show that: S(q,w) =3, [{0|pr|m)|?6(w — (E,, — Ep))
e Static Structure factor:
Sta) = [ dwSa.w) = 3 10lplm)l? = ©Olo-40,/0). ®
from which it follows that
A ]{32 fe’e) 1
S(q) = *;@/0 dwIme " (q,w) (9)
e Directly measured by scattering of fast charged particles:
d2
de(;) x S(q,w) o< —2Ime Y (q,w) (10)

e S(qg,w) directly related to total elect.-elect. interaction energy (Previous lecture notes
and Homework Problem)

5. Response to internal fields E

e Since D = cE = E + 47P, it follows that the response to internal fields is given by

2

5Pint = 50 - 6pext = (1 - 6)5:0 = (1 - 6)@

Vint (11)
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e We can define the response function to internal fields as

4re?
=
(Compare with ¢! = 1 + Vo (k)IIR. Note + vs. - sign.)

(e(k,w) —1) =

PR(k,w) or e(k,w) = 1 — Vo (k)P (k,w) (12)

The conductivity is defined for k = 0: j(w) = o(w)E(w)

o It follows that:
4

(w)=14+—0(w) (13)

w

Note: Both € and e~ ! are response functions.

6. Kramers-Kronig transform and Sum Rules

e Kramers-Kronig Relations for both ¢ !(k,w) and e(k,w)

Plasma Sum rules for both ¢ 71(k,w) and e(k,w) derived from the high frequency limits

2
_ w
61ﬁ1+;§ (14)
and
2
w
ﬂa1_Z§ (15)

Other sum rules given by Mahan, sec. 5.7.

The above is ready translated in to sum rule on S(k,w); see, e.g., Pines (Eq. 3-137).

7. ¢ and transverse waves

The dispersion relation of transverse photons in materials are determined by e(k ~
0,w)

Defined by response of current j to vector potential A. (Not carried out here. More
later. See also P. C. Martin)

8. General form of relation of ¢! and ¢

e From our definitions

1 1
-1

=1 m=-=—— 1

€ + Vi . 1—V.P (16)
e [t follows that the response functions are related by
P

Mm=——- 1

1-V,P (17)

This is a general form that will appear again. It is a very useful relation giving the
response to external fields in terms of the response to internal fields, and is the general
form of the Random Phase Approximation (RPA).



