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561 Fall 2005 Lecture 5b

Dielectric Response Function
References: Phillips Ch. 8; Pines, 121 ff. See also Mahan, Sec. 5.5; Fetter, p 151 ff;

Doniach Sec. 6.4; P. C. Martin

1. The most important response function in condensed matter

• Directly related to electron-electron interactions, correlations, total energy in solids

• Determines response to charged particles, electrical conductivity, optical properties

• Directly measurable

2. Definition

• If D is the external applied field and E is the internal field, then the standard notation
of electrodynamics is

D = εE, or E = ε−1D = D + 4πP = D + (ε−1 − 1)D), (1)

where 4πP is the response of the medium.

• Therefore P = (1/4π)(ε−1 − 1)D and (1/4π)(ε−1 − 1) is the response function for
the charge due to an external electric field. (Note: ε is also a response function (to
internal fields) – more latter.)

• For longitudinal fields in an isotropic medium, this can also be written in terms of
scalar potentials

Vint = ε−1Vext; Vext = εVint. (2)

• In terms of charge densities,

δρ = δρext + δρint. (3)

• Combining above, we find

δρint = (ε−1 − 1)
k2

4πe2
Vext. (4)

3. Density-Density Response Function

• Define (ε−1(k, ω)− 1) = 4πe2

k2 ΠR(k, ω), where ΠR = δρint

δ(Vext)

• Thus ΠR(k, ω) = 1
-hDR(k, ω), where DR is the retarded density-density response func-

tion defined before in notes number 5.
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• Explicitly at T = 0, and using the density operator ρk =
∑

i e
−ikri ,

ΠR(k, ω) =
∑
m

|〈0|ρk|m〉|2
[

1
E0 − Em + ω + iη

− 1
Em −E0 + ω + iη

]
, (5)

and

ImΠR(k, ω) = −π
∑
m

|〈0|ρk|m〉|2 [δ(E0 − Em + ω)− δ(Em −E0 + ω)] , (6)

which is the same as Pines (3-110).

4. Dynamic Structure Factor

• At T = 0:

S(q, ω) = −
-h
π

ImΠR(q, ω), ω > 0

S(q, ω) = 0, ω < 0 (7)

• It is then easy to show that: S(q, ω) =
∑

m |〈0|ρk|m〉|2δ(ω − (Em −E0))

• Static Structure factor:

S(q) =
∫ ∞

0
dωS(q, ω) =

∑
m

|〈0|ρk|m〉|2 = 〈0|ρ−qρq|0〉, (8)

from which it follows that

S(q) = −
-h
π

k2

4πe2

∫ ∞

0
dωImε−1(q, ω) (9)

• Directly measured by scattering of fast charged particles:

d2σ

dΩdω)
∝ S(q, ω) ∝ −2Imε−1(q, ω) (10)

• S(q, ω) directly related to total elect.-elect. interaction energy (Previous lecture notes
and Homework Problem)

5. Response to internal fields E

• Since D = εE = E + 4πP, it follows that the response to internal fields is given by

δρint = δρ− δρext = (1− ε)δρ = (1− ε)
k2

4πe2
Vint (11)
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• We can define the response function to internal fields as

(ε(k, ω)− 1) = −4πe2

k2
PR(k, ω) or ε(k, ω) = 1− VC(k)PR(k, ω) (12)

(Compare with ε−1 = 1 + VC(k)ΠR. Note + vs. - sign.)

• The conductivity is defined for k ≈ 0: j(ω) = σ(ω)E(ω)

• It follows that:

ε(ω) = 1 +
4πi

ω
σ(ω) (13)

• Note: Both ε and ε−1 are response functions.

6. Kramers-Kronig transform and Sum Rules

• Kramers-Kronig Relations for both ε−1(k, ω) and ε(k, ω)

• Plasma Sum rules for both ε−1(k, ω) and ε(k, ω) derived from the high frequency limits

ε−1 → 1 +
ω2

P

ω2
(14)

and

ε → 1− ω2
P

ω2
(15)

• Other sum rules given by Mahan, sec. 5.7.

• The above is ready translated in to sum rule on S(k, ω); see, e.g., Pines (Eq. 3-137).

7. ε and transverse waves

• The dispersion relation of transverse photons in materials are determined by ε(k ≈
0, ω)

• Defined by response of current j to vector potential A. (Not carried out here. More
later. See also P. C. Martin)

8. General form of relation of ε−1 and ε

• From our definitions

ε−1 = 1 + VkΠ =
1
ε

=
1

1− VkP
(16)

• It follows that the response functions are related by

Π =
P

1− VkP
(17)

• This is a general form that will appear again. It is a very useful relation giving the
response to external fields in terms of the response to internal fields, and is the general
form of the Random Phase Approximation (RPA).


