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561 Fall 2005 Lecture 6

Green’s Functions in Many Body Perturbation Theory: T= 0 Formalism
Following Mahan Ch. 2; Other good discussions in Fetter Ch. 3, Abrikosov, et.el., ...

Phillips uses Green’s functions in Chapter 6; the example considered there (the impurity
Anderson model) will be one of our most instructive examples.

1. Interaction Representation (repeated from before)
(Note distinction from Schrodinger and Heisenberg representations)
Let H = H0 +V , where in general H0 and V do not commute. Then we define operators

in the interaction representation by (Mahan Ch. 2):

Ô(t) = eiH0tOe−iH0t

ψ̂(t) = eiH0te−iHtψ̂(0) (1)

dψ̂(t)
dt

= −iV̂ (t)ψ̂(t)

If we define U(t) = eiH0te−iHt, then U(0) = 1, and dU(t
dt = −iV̂ (t)U(t).

Iterative solution:

U(t) = 1 + (−i)
∫ t

0
dt1V̂ (t1) + (−i)2

∫ t

0
dt1

∫ t1

0
dt2V̂ (t1)V̂ (t2) + . . . (2)

2. Time ordering operator T
This may be written in a compact form if we define the time ordering operator T which

orders operators with earliest times to the right (with a sign change if needed for Fermions):
T [A(ti)B(tj)] = A(ti)B(tj), if ti > tj ; = ±B(tj)A(ti), if tj > ti.
[Note the sign change if A and B each have an odd number of Fermion operators.

When the operators are interchanged one must change sign to preserve the antisymmetry.
However, this is not important at the present step since V̂ always contains only even numbers
of Fermion operators.]

Then one can show (see homework)

U(t) = T [1 + (−i)
∫ t

0
dt1V̂ (t1) + (−i)2

1
2!

∫ t

0
dt1

∫ t

0
dt2V̂ (t1)V̂ (t2) + (−i)3

1
3!

. . . + . . .

= T exp(−i

∫ t

0
dt1V̂ (t1)) (3)

3. S matrix
(more complete discussion in Fetter, p. 59-64)
Generalizing the U operator, let ψ̂(t1) = S(t1, t2)ψ̂(t2).
Then

S(t1, t2) = U(t1)U+(t2) = T exp(−i

∫ t1

t2
dt3V̂ (t3)) (4)

Key point: We assume that the true solution can be found by starting with the (in
principle known) eigenfunctions φ0 of the non-interacting Hamiltonian H0 and ”turning on”
V ”adiabatically”. That is, in the distant past, the solutions were φ0 and the true solutions
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at the present can be derived from φ0 by applying the S operator: ψ̂(t) = S(t,−∞)ψ̂(−∞) =
S(t,−∞)φ0(−∞) = S(t,−∞)φ0(0) This is discussed in Fetter, p. 59-64, where ”turning
on” is explicitly discussed with a hamiltonian H = H0 + e−ε|t|V , with ε a small positive
infinitesimal. It is shown that the expressions for ψ̂(t) = S(t,−∞)φ0(0) do not have a
well-defined limit as ε → 0; nevertheless the Gellmann-Low theorem shows that the objects
we actually use are well-defined. Later we will see that as a consequence, one can construct
Green’s functions in the form of ratios where both numerator or denominator diverge, but
their ratio is a meaningful subset of all the possible terms in the expansion for the numerator.

The assumption that the true states are correctly derived by starting from H0 and
”turning on” V is the basic assumption of Fermi Liquid Theory. More generally, it is the
assumption that no ’phase transition” occurs as V is introduced. For now we will assume
that S(t,−∞) is well-defined and describes the interacting system properly. The latter part
of the course deals with cases where there is a transition to a new state of order, e.g., to
the superconducting state. Even then the Green’s functions are very useful - they diverge
where the transitions actually occur. Also we will follow Mahan and use the same type of
analysis for large positive times, with the choice that the non-interacting eigenfunctions at
t = ∞ differ only by a phase factor from those at t = −∞:

ψ̂(∞) = S(∞,−∞)φ0(−∞) = S(∞,−∞)φ0(0) = eiLφ0(0)
(Once again, Fetter gives a more rigorous discussion.)

4. Time-ordered Green’s Functions
See, e.g., Mahan, section 2.3.
Define the Green’s function by

GAB(t1 − t2) = −i〈T [AH(t1)BH(t2)]〉, (5)

where OH(t) denotes a Heisenberg operator - (Note: the operators are in the Heisenberg
representation – NOT the interaction representation). This is similar to the form we defined
earlier for the retarded G. [In fact all the different G’s differ only in the way the terms for
t1 > t2 and t1 < t2 are treated.] In a homework exercise you are asked to show that this G
also is an appropriate Green’s function.

Examples for non-interacting cases:
A. fermions (electrons) in the vacuum where |0〉 is the empty state:

G0
k(t1 − t2) = −i〈0|T [c(t1)c+(t2)]|0〉

= −iΘ(t1 − t2)〈0|c(t1)c+(t2)|0〉
= −iΘ(t1 − t2)e−iεk(t1−t2) (6)

Fourier transform:

G0
k(E) =

1
E − (εk − iδ)

, (7)

where δ > 0 is the convergence factor so the integral is well defined at large positive time
t = t1 − t2. Thus G0

k(E) has a pole in the lower half plane with ImE < 0.
B. Degenerate Gas with |0〉 the filled Fermi sea.
Now there are contributions from both time orderings and the result is:

G0
k(E) =

Θ(εk − µ)
E − (εk − iδ)

+
Θ(µ− εk)

E − (εk + iδ)
, (8)
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Figure 1: Poles for the one-electron Green’s function.

where µ is the Fermi energy. Note that the poles are in the lower plane for εk > µ and in
the upper plane for εk < µ.

C. Phonons. See notes and Mahan
Interacting cases:
This Heisenberg form is in general not possible to use directly since we usually do not

know the eigenstates of H nor is the Heisenberg form for the operators something we can
deal with for general Hamiltonians. However, we can work with a non-interacting H0 and
we can find an iterative solution for H = H0 + V . As Mahan shows, the result can be
written

GAB(t1 − t2) = −i
0〈T [AH(t1)BH(t2)]S(∞,−∞)〉0

0〈S(∞,−∞)〉0 , (9)

where the subscript 0 means expectation with φ0, the ground state of H0.
This compact form is really just shorthand for the expression which can be derived by

combining this expression with the above definition for any time-ordered matrix element to
give the expression: (Mahan 2.4.1)

GAB(t1−t2) = −i
∑

n=0

(−i)n

n!

∫ ∞

−∞
dt3

∫ ∞

−∞
dt4 . . .

0〈T [AH(t1)BH(t2)V̂ (t3)V̂ (t4) . . .]〉0
0〈S(∞,−∞)〉0 .(10)

(We will see that one does not need to treat directly the denominator.) Since V̂ (t) =
eiH0tV (t)e−iH0t, each term in this expansion involves only the unperturbed H0, and one
can develop a set of rules to evaluate the expressions at any order.

5. Wick’s Theorem
The utility of Wick’s theorem is that it greatly simplifies evaluation of any of the terms

in the expansion of the Green’s function. The key point is that each term in the expansion
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is involves only the unperturbed Hamiltonian H0 and its eigenstates. Therefore a straight-
forward set of rules can be given. Wick’s theorem states that each time-ordered matrix
element of n creation and n destruction operators can be written as a sum of n! terms,
each a product of n paired matrix elements of the form 〈T [c(t1)c+(t2)]〉 for Fermions and
similar terms for bosons. These are simply evaluated as the Green’s functions G0 for the
Hamiltonian H0. The sign conventions are that for Fermions we must change sign each
time operators are exchanged to get to the form with the creation operator to the right (the
convention in G0).

For equal times, the Green’s functions are defined by the usual rules for expectation
values for the given operators, e.g., for non-interacting fermions, 〈ck1c

+
k2
〉 = δk1,k2n(εk1 − µ)

6. Feynman Graphs
Graphical representation of the diagrams that result from Wick’s decomposition.
Note that the exact rules for Feynman Graphs depend upon the problem.
7. Linked Graphs: Elimination of Disconnected Graphs - (Vacuum Polariza-

tion Graphs)
A great simplification is that we sum over only linked (connected) distinct graphs. It

turn out (See Mahan sec. 2.9 and more complete proofs in Fetter.) that this corresponds
exactly to cancelling the factor of 0〈S(∞,−∞)〉0 in the denominator. In addition each
connected graphs has n! permutations which are all equivalent, so that if we consider only
distinct, connected graphs, the factor of n! can be cancelled and one finds

GAB(t1−t2) = −i
∑

n=0

(−i)n
∫ ∞

−∞
dt3

∫ ∞

−∞
dt4 . . .0 〈T [AH(t1)BH(t2)V̂ (t3)V̂ (t4) . . .]〉0distinct,connected(11)

Explicit rules for Feynman graphs, with all signs and imaginary factors are given in
Mahan, Sect. 2.8. See also other texts like Fetter.

8. Frequency or energy representation
The simplest expressions are for the Fourier transform:

G(E) =
∫ ∞

−∞
dteiEtG(t). (12)

The unperturbed G’s have the simple forms given above, such as:

G0
λ(E) =

1
E − ε0λ ± iδ

, (13)

where δ is a positive infinitesimal (see above).
Examples of the analytic structure for independent particles: For fermions at T = 0 the

poles are in the lower plane for E > µ and in the upper plane for E < µ. Similarly for
phonons, at T = 0 the poles are in the lower plane for E > 0 and in the upper plane for
E < 0. Thus these functions do not obey the relations for causal functions, such as the
Kramers-Kronig relations.

The expansion of G can be given in powers of the G0’s. Each product of G0’s involves
integrals over energy for each G0, and one integral can be done immediately using conser-
vation of energy.) However, this is not the most useful approach. See below.

9. Dyson’s Equation and (Proper) Self Energies Σ?
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This is perhaps the most useful equation in all the Green’s function analysis in terms
of understanding the meaning of the Green’s functions and response functions
in condensed matter. The analysis holds for all types of Green’s functions,
not just time-ordered functions; for example, this is the most convenient form
for response functions such as the dielectric function as shown in the previous
lecture.

The key result is that the exact Green’s function equation can always be written as the
Dyson equation:

Gλ(E) = G0
λ(E) + G0

λ(E)Σ(E)λG0
λ(E) ≡ G0

λ(E) + G0
λ(E)Σ?

λ(E)Gλ(E), (14)

See schematic figure for Dyson Equation.

Here Σ?
λ(E) is the proper self-energy. The subscript λ denotes the quantum numbers that

are assumed to be conserved in the full interacting problem, e.g., momentum and fermion
statistics. (Mahan defines only the latter proper self-energy and he omits the designation
”proper”. I think it is much better to define Σ? as in Fetter.) The distinction is that Σ?

is the simpler ”irreducible” set of diagrams that cannot be cut by cutting a single G0 line,
whereas Σ(E) is an infinite series of terms like Σ?. Thus Σ? is always the simpler object to
be preferred in calculations and in interpretation.

Using the simple expression above for G0, it is easy to show that G can always be written
as

Gλ(E) =
1

E − ε0λ − Σ?
λ(E)

, (15)

where Σ?
λ(E) is defined for complex values of the energy E. Thus ImΣ?

λ(E) must be defined
properly so that the Green’s function has the proper analytic structure for Gtime−ordered,
Gretarded, etc. This means that Σ?

λ(E) also is time-ordered, retarded, etc.
The proper self energy has the interpretation of the modification of the independent

particle energy due to the effects of the interactions. This is the must useful quantity for
our studies.

10. Quasiparticles and Collective Excitations
The for of the true interacting particle Green’s function in terms of the Dyson’s equation

and the proper self-energy is the key to two of the most important ideas in this course (and
in condensed matter theory): Quasiparticles and Collective Excitations

This is the subject of the next lectures.

11. Examples
Hartree Fock: See figure giving diagrams for the H-F self-energy Σ? HF

λ (E) = Σ? Hartree
λ +

Σ? Fock
λ . More details are given in Fetter, Mahan, Ch. 2,5

Electron-phonon interaction: See Mahan, Ch. 2
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Figure 2: One-electron Green’s function and self energy. The Dyson Eq. is in terms of the
proper self energy Σ?

λ(E) for a state with quantum numbers λ. At the bottom are shown
the expressions in the Hartree-Fock approximation.


