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561 Fall 2005 Lecture 6a

Supplement to Lecture 6: Green’s Functions in Many Body Perturbation
Theory: T= 0 Formalism

Here we summarize properties of the different Green’s functions following Mahan Ch.
2; Other good discussions in Fetter Ch. 3, Abrikosov, et. al., ...

1. The six Green’s functions (Copied almost verbatim from Mahan.)

It is convenient to introduce 6 functions. The set of functions provides insight and -
more important they are essential for non-equilibrium theories. These are built upon the
“time-loop” formalism of Schwinger and were developed by Keldysh for condensed matter
applications.

Following Mahan, sec. 2.9, the 6 functions are: retarded, Gy, advanced, Ggqy, time-
ordered, Gy, anti- time-ordered, G7, and G~ and G< (no standard names; however, they
are related to the Lehman representation as discussed below). Let x1 = ri,t1, etc. Then
the functions are:

G” (w1, w2) = —i(P(x1)Y!(z2))
G (w1, m2) = +i{l (@) (z1))
Gi(r1,22) = O(t1 — t2)G” (1, 22) + O(t2 — t1)G= (21, 22)
Gi(r1,12) = O(ty — tl)G>( ,12) + Oty — to)G< (11, 32)
Gret(w1,22) = Gi(w1,12) — ($1,$2)
Gado(r1,22) = Gi(21,22) — G7 (21, 72) (1)

The functions G(k, E) are defined by the Fourier transforms. See below.
la. Expressions for non-interacting hamiltonians

For a noninteracting hamiltonian, the eigenstates are single-body functions ¢, (r) and
the field operators can be written in terms of the creation and annihilation operators:

d(x1) = Y eaga(r)e "N
X

P(z) = Y cldi(r)e (2)
X

The Green’s functions for non-interacting electrons are given on the next page.
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Green’s functions for non-interacting electrons
It is convenient to use occupation numbers for non-interacting electrons, so that the for-
mulas apply to non-zero-temperature, using ny = (cy), which is the Fermi factor for non-
interacting electrons in equilibrium. The Green’s functions can be expressed as functions

Oft:tl—tgi

G~ (1, 12)
G<(z1,22)
G(x1,22)
Gi(w1, 72)
Gret(21,22)

Gadv(mla 152)

= —i) (1 —nx)oa(r1)dh(r2)e "
A

= +i Z nagA(r1) g3 (ra)e '

= —ZZ ) = nA)a(r1) @} (ra)e N

= —ZZ —t) — na)da(r1) P} (ra)e "N

= —19 Z¢A r) ¢} (ry)e

= +iO(— Z¢A (r1)@3 (r2)e "N (3)

For the homogeneous gas the states are plane waves and the above equations simplify

to:

Expressions

—i(1 — my)e bkt
+inge text

—i(O(t) — ny)e Kt

—i(O(—t) — ny)e Kt

—iO(t)e ot

+iO(—t)e oKt (4)

as a function of energy

Fourier transforming, we find:

G~ (k,E)
G<(k,E)

Gret (k, E)
Gadv (ka E)
Gk, E)

Gik, E)

—27i(1 — ng)d(F — ex)
+2m’nk5(E — ek)

1
E—e+in
-
E—Gk—i'ﬂ
1
Grot+G% = ————
ret + E—€k+’i77k
1
G = Goty = —— 5
adv E_Ek_ink’ ( )

where 1 > 0 is a positive infinitesimal whereas g > 0 for k£ > kr and n < 0 for k < kp,
which changes sign for occupied and empty states. (Note that the order has been changed
in this set of equations since Gy and G.q, are simple to transform, and one then easily

derives G and Gf.)
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Note that the expression for G} is the same as we have given before in Lecture 6. Note
that the retarded and advanced functions are independent of the occupation; this leads
to the simple relation of Gye; and Gug, to the density of single-body states (see below)
independent of whether or not they are occupied. On the other hand, the time-ordered
form changes character for occupied and empty states and it is the useful function for
perturbation theory in the interaction in a system of electrons.

The last equations are easily generalized to the case of any eigenstates of a non-interacting
hamiltonian, using the above definitions. Here we give only the retarded and time-ordered
forms:

r r
G ) = X PIIAEY

r r
Grariea ) = L PEIAR (©

where 17 > 0 is a positive infinitesimal, and 7, > 0 for €y > Er and 1y < 0 for €\ < Ep.

These expressions are the explicit expressions needed for electron Green’s functions: In
the perturbation expansions in terms of the interaction, the time-ordered expressions are
exactly the functions used in the evaluation of diagrams. Note that one can transform from
one type of Green’s function to another simply by the placement of the poles in the upper
or lower half planes!

1b. Analytic properties for interacting hamiltonians

The important point is that the definition of the six functions applies in general and the
analytic properties of the exact functions have the same structure as in the non-interacting
case with poles in the same half-planes of the complex plane as for the non-interacting
examples.

1c. The density of states and the Lehman Representation

The Lehman or spectral representation was defined in Lecture 5a. The main point is that
it represents the spectrum (weighted by matrix elements). For the case of non-interacting
Fermions the representation is simply the density of independent-particle states. In terms
of the Green’s functions, this is a sum of the G< and G~ forms (with =+ signs for boson and
Fermions) and it is simply related to the retarded function:

1 Pa(r1) @3 (r2)
E = ——1I re ) ’ I
p(ri,r2, E) —ImGhrey(r1, 12, B § E e tin
(B) = [ dvp(re,r,E) 121 ; ™
= rp(r,r =—— —_ -
P PRES T T mE—e;ﬁ-in

If the density is resolved into the eigenstates the expressions have the simple form

1 1 1
E)y=—-—=ImG Ey=—-"1In—"—. 8
PAE) =~ ImGraa(B) =~ Imp— (5)
The general relations carry over to the interacting case, except the final equalities in
these expressions hold only for non-interacting systems.
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2. Analytic properties of the self energy

The proper self energy has been defined by the Dyson equation,
1

B~ 35(E)

GA(E) =

which is equivalent to

1
N G ) 1o
It follows that
SN(E) = Gy H(B) - GYH(B), (11)

and it is clear that ¥* also has the same properties as the Green’s functions, with retarded,
time-ordered, etc., forms.

3. Phonon Green’s functions
Can be derived by the same methods. Done later.



