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561 Fall 2005 Lecture 7

Self-energies and Quasiparticles in Many Body Perturbation Theory
(T= 0 Formalism)

Following Mahan Ch. 2, 3.3, 3.4; Other discussions in Fetter Ch. 3,4, Abrikosov, ...

1. Dyson’s Equation and Proper Self Energies Σ?

From the previous notes, the exact Green’s function can always be expressed in the
form:

Gλ(E) = G0
λ(E) + G0

λ(E)Σ(E)λG0
λ(E) ≡ G0

λ(E) + G0
λ(E)Σ?

λ(E)Gλ(E), (1)

where Σ?
λ(E) is the proper self-energy. (As defined in Fetter and the previous notes, Σ? is

the simpler ”irreducible” set of diagrams that cannot be divided into two parts by cutting
a single G0 line). This holds for any of the Green’s functions considered here: retarded,
time-ordered, phonon, electron, . . . .

From the expression above for G0, it follows that G can always be written as

Gλ(E) =
1

G0
λ(E)−1 − Σ?

λ(E)
, (2)

where Σ?
λ(E) is defined for complex values of the energy E. Thus ImΣ?

λ(E) must be defined
properly so that the Green’s function has the proper analytic structure for Gtime−ordered,
Gretarded, etc. This means that Σ?

λ(E) also is time-ordered, retarded, etc.
For a non-interacting hamiltonian H0 with eigenvalues ε0 (where λ labels the quantum

numbers such as momentum, spin, . . . ), this can be written

Gλ(E) =
1

E − ε0λ − Σ?
λ(E)

, (3)

This holds for example for electrons with H0 a appropriately chosen non-interacting hamil-
tonian; similar expressions for phonons and any case in which G0 is a Green’s function for
a non-interacting hamiltonian. Thus the proper self energy has the interpretation of the
modification of the independent particle energy due to the effects of the interactions. This
is the most useful quantity for our studies.

The equation above can be written

Σ?
λ(E) = G0

λ(E)−1 −Gλ(E)−1, (4)

and it follows that the form of Σ?
λ(E) for E in the complex plane is closely related to our

previous discussion of response functions and Green’s functions.

2. Quasiparticles
The energy ε0λ +Σ?

λ(E) can be considered to be the (complex) energy of the quasiparticle
with quantum numbers λ. Note we are making the ansatz that the true solutions have the
same quantum numbers as the non-interacting states - i.e. there is a one-to-one mapping.
This is equivalent to the assumption that there is no symmetry breaking (discussed later
in course) so that conservation laws (e.g., momentum, spin, ...) are rigorously maintained.
(See article in ”Reference Frame” by P. W. Anderson, p. 11, Physics Today, February,
2005, ”Brainwashed by Feynman” who tries to make the case that this is misleading and
the series may not sum as you think! )
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Figure 1: Schematic illustration of the peak in the Green’s function, with width∝ ImΣ?
λ(E),

which vanishes at the Fermi energy and increases as the energy is changed from the Fermi
energy, either higher (for adding electrons above EF ) or lower (from removing electrons
below EF .

ReΣ?
λ(E): The real part of Σ?

λ(E) is a shift in the energies of the quasiparticles. This
gives renormalized energies for the quasiparticles.

ImΣ?
λ(E): The imaginary part is a lifetime of the quasiparticles. To see this we go to

the continuum limit where the imaginary part is the decay into the continuum. Depending
upon the desired Green’s function, ImΣ?

λ(E) can have retarded form, time-ordered, etc.
The analytic properties in each case follow from our previous definitions.

If the renormalized Green’s function still has sharp, well-defined peaks (which means
that the lifetime broadened width, i.e., the imaginary part ImΣ?

λ(E) is small compared
to the real part ε0λ + ReΣ?

λ(E) then one can still think of the excitations as well-defined
quasiparticles.

Example: Electrons near the Fermi energy.
The zero of energy for the real part real part ε0λ + ReΣ?

λ(E) is the Fermi energy of the true
interacting system. This is because at T = 0 the Fermi energy µ is defined to be the lowest
energy at which an electron can be added, and the highest at which an electron can be
removed. This is a well-defined many-body concept.

Then the criterion that electron quasiparticles are well defined is that the imaginary
part of the self energy ImΣ?

λ(E) go to zero faster than the real part of the quasiparticle
energy ε0λ + ReΣ?

λ(E)− µ, as E → µ.
See figure for the expected behavior - more later on why it is expected to have ImΣ?

λ(E) ∝
(E − EF )2. 3. Renormalization as function of momentum

In a crystal (or the homogeneous gas) in which the states are labelled by momentum k,
the dispersion of the quasiparticles is “renormalized”

dεk

dk
=

dε0k
dk

+
dReΣ?

k

dk
. (5)

This is the important effect in the Hartree-Fock approximation; however, in general this is
not the full renormalization.

4. Renormalization as function of energy
See Mahan section 3.3, 5.8A, and 6.4B)
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Figure 2: Examples of Diagrams.

For E near the QP energy ελ = ε0λ + ReΣ?
λ(ελ), one can expand Σ(E) to find

ReΣ?
λ(E) = ReΣ?

λ(ελ) + (E − ελ)
[
d ReΣ?

λ(E)
dE

]

E=ελ

, (6)

which leads to

Gλ(E) =
1

E − ε0λ − Σ?
λ(E)

≈ Zλ

E − ελ − ZλImΣ?
λ(ελ)

, (7)

which is exactly like an ordinary G0 except that the energies are renormalized and the
weight Zλ is renormalized. (One can show that the weight Z < 1 in physically realistic
cases.)

5. Properties of Gλ(E)
Weighted density of states related to retarded form:

ρtotal(E) = − 1
π

∑

λ

ImGret
λ (E) with ρλ(E) = − 1

π
ImGret

λ (E) (8)

6. Examples of Diagrams
See Figure.


