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561 Fall 2005 Lecture 9

Phonons and Electron-Phonon Interactions in Metals
See Phillips 10.1-10.3; Pines, ch. 5; Nozieres and Pines, vol. 1, p 237 ff); Mahan, Ch.

1.3, 2.7-8, 6.4

1. The Electron-Nucleus System, beyond the adiabatic approximation
As we derived in Lectures 2-4, the hamiltonian for the system of electrons and nuclei

can be written:

H = He + Hph + He−ph (1)

where He is the hamiltonian for the electrons moving in the presence of fixed nuclei, and Hph

is the hamiltonian for nuclei moving with effective interactions determined by the electrons
assuming they evolve in their instantaneous (adiabatic) ground state as a function of the
nuclear positions. The final term He−ph is the interaction term in which the motion of the
nuclei causes transitions among the electronic states.

In the abiabatic approximation (ignoring He−ph) the problem is separable. The states of
the electrons are the eigenstates of He that describes interacting electrons in the presence of
fixed nuclei. We have described the electron problem in terms of a perturbation expansion
in the interaction expanded in a basis of non-interacting states. The most important point
from our work so far is that even in the presence of large electron-electron interactions, it is
reasonable to describe the states in a metal near the Fermi energy as quasiparticles, which
are modified particles with the same quantum numbers are independent particles.

The nuclear vibration problem described by Hph can be solved exactly within the har-
monic approximation, by the transformation to normal modes. These states form the
independent particle basis for many-body anharmonic effects. Below we first review the
description of harmonic phonons in terms of Green’s functions.

Then we consider the effect of He−ph upon the electronic states, and conversely the effect
of the electronic states upon the phonons.

2. Transformation to normal modes and Green’s functions for Phonons
From lecture 4: Within the harmonic approximation, the normal modes for a crystal

are phonons. The quantum system can be treated by solving the classical equations of
motion for the classical oscillator eigenmodes and quantizing the oscillators. From the
Bloch theorem the eigenmodes can be classified by the q, e.g., for one atom per cell, (with
a normalization volume of N cells)
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∑
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Defining new operators

Qq =
(

Mωq

2-h

)1/2
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uq, (5)

the hamiltonian becomes

H =
∑
q

-hωq

[
P ∗

q Pq + Q∗
qQq

]
. (6)

Quantizing the independent oscillators, the creation and annihilation operators are

a†q = (Q∗
q − iPq), aq = (Qq + iP ∗

q ), (7)

and the quantum hamiltonian operator becomes
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where the a†q and aq are the creation and annihilation operators, with the normalized dis-
placements given by

Qq = (aq + a†−q). (9)

Phonon Green’s functions
We will label the phonon Green’s function as Dq following the notation of Mahan. The

desired Green’s function follow immediately from our previous analysis of a single oscillator
and analysis closely related to that for electron Green’s functions (see Lectures 6 and 6a).
The time-ordered form is given by:

Define the Green’s function by

Dq(t) = −i〈T [Q̂q((t)Q̂−q(0)]〉, (10)

This is the form needed in perturbation theory in terms of the interactions. The general
form at finite T is given below. First we consider T=0 where Green’s function for the
harmonic lattice is given by inserting the expression for Q in terms of aq and a†−q, and
noting that the only non-zero terms are for the ordering 〈aqa

†
q〉. It is easy to show that the

time-ordered form is

Dt
q(t) = −i

[
Θ(t)e−iωqt + Θ(−t)eiωqt

]
, (11)

which has the Fourier transform

Dt
q(ω) =

1
ω − ωq + iη

− 1
ω + ωq − iη

=
1

ω2 − ω2
q + 2iωqη

, η > 0. (12)

Note that this is the time-ordered form which has poles in the lower part of the complex
plane (Imω < 0 for ω > 0 and in the upper part of the complex plane (Imω > 0 for ω < 0.
The poles are shown in the figure and one can note the similarity to the time-ordered
electron Green’s function. The retarded form has poles only in the lower plane. It is easily
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Figure 1: Poles for the time-ordered phonon Green’s function.

found by replacing −iη with +iη in the second term of the middle expression in Eq. 13,
which leads to the same expression as that given in lecture 4,

Dret
q (ω) =

1
ω − ωq + iη

− 1
ω + ωq + iη

=
1

ω2 − ω2
q + 2iωη

, η > 0. (13)

The phonon Green’s functions have the same analytic structures as the dielectric func-
tion and polarizability (retarded response functions) given in Lecture 5b, and the RPA form
of the polarizability given in Lecture 8 (where we gave the time-ordered form needed for
the RPA calculations of the self-energies).

The phonon Green’s functions can also be written explicitly for finite temperature in
the harmonic approximation. Using the phonon occupation number Nq = 〈a†qaq〉 = 1

eβωq +1
,

the expressions become (see Mahan 2.9):

Dt
q(t) = −i

[
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]
, (14)
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]
= −2Θ(t)sin(ωqt) (15)

and
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q + 2iωqη
, (16)
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q (ω) =

1
ω2 − ω2

q + 2iωη
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The change from T=0 is the occupation number in the time ordered form.

3. The Electron-Phonon Interaction
The Electron-Phonon Interaction represents the fact that the nuclear motions can cause

transitions between the electronic states. In second quantized form the el-ph interaction
term is (see Phillips Sec. 10.3, Mahan Sec. 1.3):

He−ph =
∑
q,p,σ

Mq,pc
+
p+q,σcp,σ((aq + a†−q)), (18)

where M denotes an electron-phonon matrix element denoted by the vertex in Fig. 2. In
general there is a sum over the different phonons at each q, which we have omitted for
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Figure 2: Various aspects of the electron-phonon interaction as discussed in the text

simplicity. From the definition of the coupling term it follows that the matrix element for
nuclear displacements in the x direction is given by

Mq = − 1
(NM)1/2

∫
d3rφ∗p(r)

[∑

I

dV (r −RI)
dx

eiqR0
I

]
φp−q(r) (19)

where the minus sign comes from changing the derivative from R to r. (In general there is a
sum over the different phonons at each q, which we have omitted for simplicity.) The matrix
element is independent of p if the wavefunctions are plane waves, which we will assume for
simplicity.

Key Point: phonons create potentials that are screened just like the Coulomb interaction
by the electrons, with the difference that the characteristic frequencies are low ≈ phonon
frequencies instead of ≈ plasmon frequencies

3. Comments on the Electron-Phonon Interaction

• Renormalized phonons (frequencies for nuclei screened by electrons)

We can derive again the basic idea that the electrons screen the motion of the nuclei,
which is the basic idea of the adiabatic approximation. If we start from completely
decoupled nuclei and electrons, then the zero-order hamiltonian for nuclear motion
is bare nuclei with a rigid background of electrons. Then the Coulomb interactions
between the nuclei would lead to plasmons with frequency Ωq for q → 0. Putting
in screening is exactly the same as for the Coulomb interaction discussed before; the
result is the frequencies are renormalized to

ω2
q = Ω2

q −
q2

4πe2
|Vq|2(1− ε−1(q, ω ≈ 0)) (20)
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The structure of the dielectric function leads to Kohn anomalies, etc. (Log terms
in the Lindhard dielectric function). For q → 0 this leads to accoustic modes with
velocity of sound s given by s = vF (Ω2

p/3ω2
p) = vF (Z/3)(m/M), where vF is the Fermi

velocity, Ωp is the ion plasma frequency and ωp is the electron plasma frequency.

• Meaning of the electron-phonon interaction matrix element

For the same reasons as given above the potential created by the phon is screened, so
that in the expression for the matrix M , the potential is screened by the electrons.
Thus the electron-phonon interaction matrix element in all the following should be
taken as a screened matrix element, screened by the electron dielectric function.

• Electron-Phonon Interactions within the RPA

The RPA provides a feasible way to calculate and include the screening. In the
homogeneous gas the screening is described by the Lindhard function, which captures
many key features.

4. Consequences of the Electron-Phonon Interaction

• Phonon Lifetime - acoustic attenuation in a metal due to excitation of the electrons
by phonons - See Phillips 10.4

• Electron lifetime - scattering of electrons by phonons - a dominant cause of resistivity
- see Phillips - we will consider (notes presented in class) the scattering rate; in terms
of the rate the conductivity can be calculated from the Boltzman Eq., as described
by Ashcroft and Mermin and many other texts.

Note: This is an example of the imaginary part of the self energy denoting energy
loss.

• Renormalized electron (enhanced mass) Demonstration that if the electrons have an
imaginary self energy (damping) then they must also cause a frequency dependent
real self-energy (change of mass) Notes provided in class.

• Induced electron-electron interactions

Leads to attractive interaction and is the mechanism for superconductivity in ordinary
(“low temperature”) superconductors. We will consider the attractions later which
have the form

Heff =
∑

q,p,p′

|Vq|2
ω2 − ω2

q + iη
c+
p+qc

+
p′−qcpcp′ . (21)

(This is described in Nozieres and Pines, vol. 1, p 243 ff.)


