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Solution of the Anderson Impurity Model and the Kondo Problem
See Phillips, Ch. 6 and 7. Also Mahan, Sec. 1.4, Ch. 11.

1. Exact solutions
Here we list the fact that there are exact solutions using the numerical renormalization

group[1], the Bethe Ansatz[2] and quantum Monte Carlo[3]. Because problem is one dimen-
sional (radial) it can be solved exactly by the Bethe Ansatz and the renormalization group.
(We will describe the general idea and “poor man’s scaling”.) Quantum Monte Carlo is
very general and in the case the Fermion sign problem can be treated well enough that that
thermal, equilibrium properties are essentially exactly described.

The main results are that the exact solution is a non-magnetic single ground state and
there is a characteristic energy scale TK governing the properties as a function of energy
and temperature. There is a logarithmic dependence on T/TK and there is a crossover
from high T spin fluctuations to low T coherent spin-quenched behavior. There is no sharp
phase transition.

Solution of the Anderson Impurity Model in the Large Degeneracy Limit
The key idea of this approach is to identify a limiting case in which an analytic so-

lution can be found that has the correct symmetry. The argument is that this captures
the qualitative effects and that changing the hamiltonian to the actual one is an analytic
continuation that preserves the symmetry and leads to the true solution.

Consider a problem in which the both the localized state and the host bands are N-fold
degenerate; each of the ν = 1, . . . , N localized states couples to the continuum band of
states with labelled ν through a term that conserves ν, VkL[c+

kνcLν + c+
Lνckν ], where VkL is

independent of ν. This the generalization of the spin problem and it is quite reasonable
for a d state (N = 10) or an f state (N = 14). The problem can be solved exactly in the
N →∞ limit.

The hamiltonian can be written exactly as for the Anderson model by replacing the spin
index σ with an index ν = 1, . . . , N .

H = Hband + Himpurity + Hhybridization

=
∑

kν


εkc

+
kνckν + εLc+

LνcLν +
U

2

∑

kν′ 6=ν

nLνnLν′ + VkL[c+
kνcLν + c+

Lνckν ]


 (1)

All the step proceed as in the N = 2 case for U = 0 (N degenerate bands) and for the
Hartree-Fock solution, except that now the case of one electron per site is not symmetric
for N > 2. The sum rules require that the filled states integrated over energy summed over
ν = 1, . . . , N total one electron, and the empty states sum to N − 1 electrons.

This may seem a complication, but arguments for the N → ∞ limit lead to a simple
analytic solution that displays the key points.

The solution is given in Mahan (First Ed. gives the T=0 form and the second edition
the finite T solution) and my handwritten notes (available). The interesting region is the
case where εL << 0 (where we set EF = 0) and εL + U >> 0, so that the occupation
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is approximately nL ≈ 1. The main results are that the ground state is an equal linear
combination of the ν = 1, . . . , N states, and that the energy is lowered by an amount

δ = We−
π

N∆
|εL| (2)

where

∆ ≡ π|V |2ρ(EF ) (3)

is the resonance width for the each of the N impurity states in the non-interacting U = 0
case.

Note that the combination N∆ appears in teh formula. This is the key step in under-
standing the simplification in the large N limit: allow N to become large while keeping the
combination N∆ fixed.

The result is a spectrum like that shown in the figure. Note the asymmetry and the
fact that the lower band has width N∆. Note the sharp peak with narrow width that is
required to be at the Fermi energy. This feature leads to the satisfaction of the Friedel sum
rule!

The key point is that no matter how small is the coupling V , it leads to the strongly
coupled ground state with nonmagnetic character. The energy scale is set by δ which
determines TK , and δ depends exponentially upon the “bare” parameters of the problem.
A new collective energy scale in the strongly interacting system!

As stated in the previous notes, the characteristic temperature TK varied wildly - from
300 K for V in Au (even higher but hard to observe at high T where many other effects
obscure the Kondo effect) to 10−4 K for Mn in Au.

Transformation of Anderson Impurity Model in large U limit to the impurity
spin model

See Phillips, Ch. 7.
Schrieffer-Wolfe transformation to an effective spin model with antiferromagnetic coupling
J of a localized spin and the band elactrons.

Poor Man’s scaling
See Phillips, Ch. 7.

The key idea is to integrate out the effects of high energy band states and work ones way
down to a renormalized problem with large coupling Jeff even if the bare starting J was
small.

References

[1] K. G. Wilson, ‘The renormalization group: Critical phenomena and the kondo problem’,
Rev. Mod. Phys. 47:773–840, 1975.

[2] N. Andrei, K. Furuya, and J. H. Lowenstein, ‘Solution of the kondo problem’, Rev. Mod.
Phys. 55:331–402, 1983.

[3] J. E. Hirsch and R. M. Fye, ‘Monte Carlo Method for magnetic impurities in metals’,
Phys. Rev. Lett. 56:2521–2524, 1986.


