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561 Fall 2005 Lecture 14

Green’s Functions at Finite Temperature: Matsubara Formalism
Following Mahan Ch. 3

1. Recall from T=0 formalism

• In terms of the exact hamiltonian H the Green’s function is given by operators in the
Heisenberg representation OH(t) = eiHtOe−iHt. The time-ordered form is

GT
AB(t1 − t2) = −i〈T [AH(t1)BH(t2)]〉, (1)

and the retarded form is

Gret
AB(t1 − t2) = −i〈[AH(t1), BH(t2)]〉, (2)

where [, ] denotes a commutator (boson) or anticommutator (fermion).

• Interaction Representation

If H = H0 + V , operators in the interaction representation can be written as

Ô(t) = eiH0tOe−iH0t (3)

This is useful for expansion in powers of V .

• Examples for non-interacting electrons

A. Fermions (electrons) in the vacuum where |0〉 is the empty state. For either retarded
or time-ordered:

G0
k(t1 − t2) = −i〈0|T [c(t1)c+(t2)]|0〉

= −iΘ(t1 − t2)〈0|c(t1)c+(t2)|0〉
= −iΘ(t1 − t2)e−iεk(t1−t2) (4)

Fourier transform:

G0
k(E) =

1
E − (εk − iδ)

, (5)

where δ > 0 is the convergence factor so the integral is well defined at large positive
time t = t1 − t2. Thus G0

k(E) has a pole in the lower half plane with ImE < 0.

B. Degenerate Gas with |0〉 the filled Fermi sea.

For time-ordered case, there are contributions from both time orderings and the result
is:

G0
k(E) =

Θ(εk − µ)
E − (εk − iδ)

+
Θ(µ− εk)

E − (εk + iδ)
, (6)

where µ is the Fermi energy. Note that the pole is in the lower plane for εk > µ and
in the upper plane for εk < µ.
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• The time ordered function is the one that is most convenient for calculations because
it is needed in the expansions in terms of the interactions.

• For interacting electrons (Mahan ch. 2): Green’s function expansion → Dyson’s Eq.
and proper self energies Σ∗ derived for time-ordered G.

• The retarded function is the same except the pole for εk < µ is shifted to the lower
plane. The retarded functions are needed for relation to experimental measurements.

• To find retarded G in interacting case, first do time ordered, then convert to retarded.

2. Finite temperature - One possible form
The above expressions are valid also for T 6= 0 where 〈〉 means thermal expectation

value in the grand canonical ensemble, so that

GT
AB(β, t1 − t2) = −iT r

[
e−β(Ĥ−µN̂−Ω)T [AH(t1)BH(t2)]

]
. (7)

where β = 1/kT . The electron Greens functions is

GT
p (β, t1 − t2) = −iT r

[
e−β(Ĥ−µN̂−Ω)T [eiĤt1cpe

iĤ(t2−t1)c†pe
−iĤt2 ]

]
, (8)

where

e−βΩ = Tr
[
e−β(Ĥ−µN̂)

]
. (9)

If we work (formally) in the basis of the exact states |n〉, and Fourier transform, this
leads to the expression for the retarded function

Gret(p, ω) = eβΩ
∑
n,m

|〈n|cp|m〉|2 e−βEn + e−βEm

ω + En − Em + iδ
, (10)

and similar expressions for other functions.
Free particle expressions have thermal factors as we have described before.

3. Finite Temperature and complex time/temperature
There is a problem, however, in practice: if we consider define H = H0 +V and express

the Green’s function as an expansion in V , then V appears in both the thermal factor and
in the time dependence. There appear to be two types of expansions required.

The solution is to realize that the factors of the form e−βH+iHt can treated together in
terms of a complex time in which t and β are the real an imaginary parts.

Intermediate Step: Free fermion and boson occupation functions in the com-
plex plane

The well-known occupation functions

n(z) =
1

eβz ± 1
(11)

are periodic functions for z along the imaginary axis (z = iy where y is real) with poles at
z = iωn, where ωn = π

β 2n for bosons, ωn = π
β (2n + 1) for fermions.
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The value at any z can be determined from the residues of the poles:

n(z) =
1

eβz ± 1
= ±1

2
+

1
β

∑
n

1
iωn − z

(12)

5. Matsubara form
The key to the Matsubara form is to define Green’s functions for imaginary time τ = it

which is like inverse temperature β. Then one can use all the algebra of the time ordered
formalism (Feynman linked diagrams, Wick’s theorem, ...). The expressions are even easier
than at T=0 because the frequency sum can be done more easily. In addition by simple
analytic continuation one gets directly the retarded Green’s function in real frequencies.

The Matsubara form treats time as a complex temperature. If we define τ = it, and
K̂ = Ĥ − µN̂ for the grand canonical ensemble, then the τ -ordered Greens function by

Gk(τ1 − τ2) = −〈Tτcp(τ1)c+
p (τ2)〉

= −Tr
[
e−β(K̂−Ω)Tτ [eτ1K̂cke

(τ2−τ1)K̂c†ke
−τ2K̂ ]

]
(13)

where

cp(τ) = eτK̂cpe
−τK̂ . (14)

(Here we explicitly indicate that K̂ is an operator whereas Ω is a number.) It is straight-
forward to show G is a function of τ = τ1 − τ2 by cyclic permutation of operators in Tr.

(Anti)periodicity as a function of τ and Fourier transform

• Periodic or antiperiodic for τ → τ + β. Proof (given in Mahan, Ch. 3, and many
other texts) uses cyclic permutation of operators. Consider τ > 0:

Gk(τ) = eβΩTr
[
e−βK̂eτK̂cke

−τK̂c†k
]

= eβΩTr
[
e(τ−β)K̂cke

−τK̂c†k
]

(15)

If we let τ ′ = τ − β and permute the operators in the above expression, we find

Gk(τ) = eβΩTr
[
eτ ′K̂cke

−(τ+β)K̂c†k
]

= eβΩTr
[
e−βK̂eτ ′K̂c†ke

−τ ′K̂ck

]
(16)

or

Gk(τ) = −Gk(τ ′) = −Gk(τ − β). (17)

Thus for fermions Gk(τ) = −Gk(τ − β) and the entire function is determined by
the values on the interval 0 < τ < β. (For bosons the proofs are identical except
Dk(τ) = +Dk(τ − β).)

• Since G is periodic with period 2β, it is determined by a discrete set of Fourier compo-
nents. Using the antiperiodic character derived above, the Fourier Transform is given
by the integral over the finite interval

G(k, iωn) =
∫ β

o
dτeiωnτGk(τ), (18)

where ωn = (2n + 1)π
β for fermions. (For bosons, D is periodic with period β and the

Fourier components are for frequencies ωn = (2n)π
β .)
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• Free fermions:

G(k, iωn) =
1

iωn − εk
, (19)

which is the same as the expression for real frequency (E = ω) with iω → ω + iδ

• T dependence is completely in the positions of the poles!

• Result: For all Green’s functions (free and interacting; boson and fermion) the Mat-
subara form reduces the the retarded form at real frequency with the analytic contin-
uation iω → ω + iδ. This is an analytic continuation from the imaginary frequency
axis to the real axis.

6. Wick’s Theorem, diagrams, Dyson’s Eq., self energies, etc., work just as
for T = 0

Sum over all internal momenta (conserving momentum at each vertex) and either: 1)
integrate over all internal 0 < τ < β, or 2) sum over all internal iωn (conserving energy at
each vertex)
Exact rules are given in Mahan, Ch. 3 and other texts.

The integrals become sums and are easier in actual calculations!
One difference is that Wick’s theorem is an operator identity in the T = 0 formalism;

in the Matsubara form the contractions are valid for the thermal expectation values only.
Thus the theory is restricted to thermal equilibrium and has not been generalized to non-
equilibrium ensembles.

7. Advantages of Matsubara formalism
A key advantage is that is a thermal equilibrium theory. Sometimes the limit of T → 0

is not the same as the T = 0 result. Which is right? The T → 0 formalism is designed to
get the true ground state including an equal thermal occupation of degenerate states. The
T = 0 may find only one of the degenerate states or it may find an excited state as a result
of the “adiabatic turning on of the interaction” which may not find a crossing of states or
a phase transition.

8. Example - Green’s function for an isolated atom (the Anderson impurity
model in the isolated limit)

In the T = 0 formalism we described in words a transition (or crossover) between states
with different degeneracies as a function of occupation or Fermi energy. In the finite T
formalism it is natural. The energy of the state as a function of occupation n is

En = nε +
n(n− 1)

2
U, (20)

and the partition function is given by

Z =
N∑

n=0

Zne−βEn , (21)

where Zn is the number of ways n particles can be placed in N states, Zn = N !/(n!(N−n)!.
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The Green’s function is

G(iωm) = −
∑
ν

∫ β

o
dτeiωmτ 〈Tτ cν(τ)c†ν〉, (22)

and in terms of the energies En for n electrons, it becomes

G(iωm) =
1
Z

∑
nν

Zn〈n|cν |n + 1〉〈n + 1|c†ν |n〉
e−βEn + e−βEn+1

iωm + En − En+1
. (23)

Using the relation Zn+1 = Zn
N−n
n+1 , this leads to the form

G(iωm) =
1
Z

∑
n

Zne−βEn

[
N − n

iωm + En −En+1
+

n

iωm + En−1 − En

]
. (24)

This has a very simple interpretation as the thermal weighted average f all possible
addition and removal transitions. The retarded Green’s function Gret(ω) is found by sub-
stituting iωm → ω + iη, η > 0. The delta function peaks in the ImGret(ω) are the addition
and subtraction energies of the Anderson impurity model with no hybridization with the
surrounding metal.

9. Anderson impurity model including hybrization
This is not done here. Good problem for a project. Using the large N approximation,

one can determine the spectra (including the Kondo resonance at the Fermi energy) and
the temperature dependence (where the resonance goes away for T >> TK).

10. Finite Temperature Green’s Function in the Hartree-Fock Approxima-
tion

The equation of motion for the operator cp,σ(τ) is (Here V is tehe volume often omitted
in other expressions.)

∂cp,σ(τ)
∂τ

= [H, cp,σ(τ)] = −ξpcp,σ − 1
V

∑

p′,σ′,q6=0

vqc
†
p′−q,σ′ cp′,σ′ cp−q,σ

Using the definition of the Green’s function and the result of part (a), we get that

∂G(p, τ)
∂τ

= −δ(τ)− < Tτ

[
∂cp,σ(τ)

∂τ

]
c†p,σ(0) >

= −δ(τ)− ξpG(p, τ) +
1
V

∑

p′,σ′,q6=0

vq < Tτ c
†
p′−q,σ′(τ) cp′,σ′(τ) cp−q,σ(τ) c†p,σ(0) >

In the Hartree-Fock approximation

< Tτ c
†
p′−q,σ′(τ) cp′,σ′(τ) cp−q,σ(τ) c†p,σ(0) >≈ np−q,σG(p, τ)

After the Fourier transform we get

G(p, ipn) =
1

ipn − ξp
+

1
V

∑

q6=0

vqnp−q
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The self energy term is

Σ(p, ipn) = − 1
V

∑

q6=0

vqnp−q

This term was calculated in homework 4 for zero temperature. Here we note that for
non-zero temperature the HF singularity at the Fermi surface is removed..


