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561 Fall 2005 Lecture 15

Lattice models for interacting electrons and Dynamical Mean Field Theory
- DMFT

Most thorough review to date: A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg,
”Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite
dimensions”Rev. Mod. Phys. 68, 13-125 (1996).
Recent review: K. Held, et. al. Psik highlight (can find on web).
Popular article: G. Kotliar and D. Vollhardt, Physics Today, March 2004. p. 53.

1. Summary
The basic idea of dynamical mean field theory (DMFT) is to take into account corre-

lations explicitly within a local region, treating all effects of the surrounding medium via
a dynamical mean field. This can be viewed as a generalization of the Weiss mean field
that embodies average effects of neighbors with thermal fluctuations or the coherent po-
tential approximation that represents the average propagation of an electrons through an
alloy with random potentials. Like those examples, the dynamical mean field is determined
by a self-consistency condition relating the mean field and local expectation values. The
generalization to a quantum system requires that the field be dynamical, i.e., frequency-
or time-dependent, to include the effects of quantum fluctuations. DMFT is naturally for-
mulated in terms of Green’s functions and self-energies closely related to those used in the
many-body perturbation methods The solution for the local region explicitly include local
correlations of the electrons using non-perturbative methods such as exact diagonalizationa
and QMC. It is fruitful to see the correspondence to other methods as we develop practical
approaches to DMFT in terms of the local approximations. The simplest approximation for
the local region is a single site, in which case the theory reduces to a self-consistent version
of the Anderson and Kondo impurity models. This approximation is exact in three limits:
1) non-interacting electrons, 2) isolated atoms, and 3) the limit of high dimensions where
mean field theory is exact. Studies of Hubbard models have led to dramatic conclusions on
metal-insulator transitions, etc., and there have been many applications to problems such
as Ce, and transition metal oxides. Dynamical cluster approximation (DCA) approaches
take into account additional effects of local correlation and provide an in-principle way to
reach the exact solution as the limit of large clusters.

2. Classical static mean field theory
The concept of a mean field plays a central role in all areas of many-body and statistical

physics. In the field of electronic structure, mean field approximations for electron-electron
interactions are ubiquitous. The Hartree-Fock approximation leads to a potential VHF (r, r′)
that is non-local in space, but is local in time, i.e, it is independent of energy. The Kohn-
Sham potential VKS(r) is local in both space and time; its value at each point r in principle
is a functional of the density n(r′) everywhere, but practical approximations in terms of the
density assume VKS(r) depends only upon the density in a local region near r.

Mean field theory is also the paradigm in statistical mechanics for understanding phase
transitions. A simple example is the Ising model for interacting spins

H = −
∑

i,j

JijSiSj − h
∑

i

Si (1)
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where h is an external magnetic field and Jij are spin interactions. The average spin on
each site is the thermal average mi ≡ 〈Si〉. This mean field approach is to assume that
each spin Si acts as if it is is in an effective magnetic field heff – the Weiss field, introduced
by P. Weiss in 1907 – which is the sum of an external field and an average of effects of
interactions with neighbors,

heff = h +
∑

j

Jijmj (2)

where 〈Sj〉 denotes a thermal average. If Si is in thermal equilibrium in the effective field
heff , then it is given by the Brillouin function

mi = tanh(heff/kBT ) (3)

Of course site i is no different from the other sites and the condition that mi = mj ≡ m for
all j leads to the self-consistent equation

m = tanh([h + zJm]/kBT ), (4)

where z is the number of neighbors and J is the interaction.
This leads to the well-known mean field approximation for the magnetic phase transitions

as a function of temperature.
The mean field equations become exact in the limit of a large number of neighbors z since

fluctuations since in that case the neighbors act as a bath in which the fluctuations of the
effective field become small. This is formally the case for lattices in which the dimensionality
d is allowed to become large, i.e., the d →∞ limit.

Scattering of waves in disordered media has an even longer history, exemplified by
Rayleigh’s famous theories of scattering of light and sound waves. In quantum mechanics
perhaps the original use is in disordered systems, such as alloys, and the coherent potential
approximation (CPA) is an effective potential acting on a site that self-consistently repro-
duces the average effect of a random distribution of neighbors. See for example review of
CPA by R. J. Elliott, J. A. Krumhansl and P. L. Leath in Rev Mod Phys

An important step in many-body physics is the alloy analogy for interacting electrons
by Hubbard in the famous Hubbard I approximation.

3. Generalization to quantum dynamical mean field theory
Different lines of reasoning have converged to define a set of approaches to the quantum

many-body problem, known variously as ”dynamical mean field theory” or dynamical CPA
as well as other descriptive terms. We will refer to the general approach as ”dynamical
mean field theory” (DMFT), and we will denote useful, approximate versions by acronyms
“DxA” where “A” serves as a reminder that an approximation has been made.

Generalization of the Hubbard’s analogy to alloys - review by Kakehashi[1] - Is the 1992
paper by Kakehashi[1] equivalent to Jarrell and Georges refs. below?

Correlated fermions in infinite dimensions[2] and subsequent work that mapped the Hub-
bard model onto a self-consistent quantum impurity model and provided effective methods
for solution[3, 4]

Review by Georges, et al.[5]
In classical mean-field theory, the local magnetization mi is assumed to be given by

equations for a single spin decoupled from the other spins, except for the effective mean
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MFT DFT DMFT
Local Magnetization mi Density n(x) Green’s Func. Gii(ω)

Observable at site i at point x at site i

Equivalent Spin in Electrons in Quantum
system effective field effective potential impurity model

Generalised Effective Kohn-Sham Effective
Weiss field local field potential hybridization

Table 1: Comparison of theories based on functionals of a local observable, From Georges
lecture notes with small modifications.

Quantum Classical
Hamiltonian H −∑

ijσ tijc
+
iσcjσ +

∑
i Hsite(i) −∑

ij JijSiSj − h
∑

i Si

Local Observable Gii(z) = − < c†i (τ)ci(0) >iωn mi =< Si >

Effective single-site Heff = Hsite +
∑

lσ ε̃kc
†
kσckσ+ Heff = −heff S

Hamiltonian +
∑

lσ Ṽk(c
†
kσciσ + h.c)

Effective mean field ∆̃ (z) =
∑

l
|Vl|2
z−ε̃l

heff

G−1
0 (z) ≡ z + µ− ∆̃(z)

Self-consistency relation
∑

k[∆̃(z) + G(z)−1 − εk]−1 = G(z) heff =
∑

j Jijmj + h

Table 2: Correspondence between the static mean-field theory of a classical system and the
dynamical mean-field theory of a quantum system. From Georges lecture notes with small
modifications.

field due to the average effects of neighbors, the Weiss field. In a quantum system effective
mean fields can be introduced in analogous manner; however, quantum mechanics introduces
a dependence upon time or energy because the effective field must take into account the
exchange of particles between the site and the neighboring region. This is accomplished
through the construction of an effective action at the site and a Green’s function G0(τ − τ ′)
that describes creation of a fermion on the central site at time τ (i.e., coming from the other
sites that form an “external bath”) and destroyed at time τ ′ (i.e., going to the bath). The
function G0(τ − τ ′) plays the role of a quantum dynamical mean field and, in the single-
site approximation, DMFT corresponds to solving the quantum problem for interacting
electrons on the central site in the presence of the dynamical mean field. (It is useful to
work with imaginary time τ = it and the Matsubara formalism.)

1 Dynamical local approximation (DLA): mapping to a quan-
tum impurity problem

CHECK - what is best abbreviation? DLA??
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The DMFT approach can be illustrated by the simplest model, the one-band Hubbard
model discussed in Sec. ??. The hamiltonian given in Eq. ?? is repeated here,

Ĥ =
∑

i6=jσ

ti6=jc
+
iσcjσ +

∑

iσ

ε0n̂iσ +
1
2
U

∑

iσ

n̂iσ, n̂i−σ, (5)

where i, j label the sites in the lattice and n̂iσ = c+
iσciσ. The interaction U is limited to

opposite spin electrons on the same site, and the the single-body kinetic terms tij lead to
dispersion to the electron states. The simplest model assumes the t′s are zero except for
nearest neighbor hopping terms. (We will also consider t′ for second neighbors, which plays
an important role in some cases.)

If the mean field is applied to a single site, the problem simplifies in a way analogous to
the Weiss mean field of magnetism. The central quantity in the theory is the local Green’s
function on a given site i

Gσ
ii(τ − τ ′) = −〈Tτ ciσ(τ)c†iσ(τ ′)〉 (6)

Since the mean field approach in the single-site approximation considers all other sites as
an effective bath, the problem reduces to an Anderson impurity model. All of theoretical
understanding and machinery developed for the impurity model can be carried over to
DMFT in the single-site approximation. However, there is a crucial difference that the
effective dynamical mean field must be self-consistent with the solution on the central site.
This “bootstrapping” effect can lead to phase transitions and other physical phenomena
qualitatively different from the consequences for an impurity in a host metal.

The hamiltonian for the Anderson impurity model is given by the same expression as
before except for changes in notation:

H = Hsite + Hbath + Hhybridization

= ε0c
+
iσciσ + Uni↑ni↓ +

∑

kσ

ε̃kc
+
kσckσ +

∑

kσ

Ṽki[c+
kσciσ + c+

iσckσ]. (7)

The difference in the present case is that the first term the original interacting hamiltonian
on site i(which is not really an impurity) and the quantities ε̃k and ṼkL are effective param-
eters describing the rest of the system as a bath and the hybridization of the site and the
bath.

If there were no interaction (U = 0) the previous analysis of the AIM shows that the
effective Green’s function on the site is

G(iωn) =
1

iωn − ε0 − ∆̃(iωn)
(8)

with

∆̃(iωn) =
∑

k

Ṽ 2
k

iωn − ε̃k
→

∑

l

Ṽ 2
l

iωn − ε̃l
. (9)

Note that the only way the bath enters the equations is through the function ∆̃(iωn). It is
not actually needed to express ∆̃(iωn) in terms of the Ṽk and ε̃k; instead, it can be replaced
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by a sum the represents the spectrum on the site. This is the effective function that is
varied to find the self-consistent solution as described below.

The solution of the problem involves treating the interaction on the site in the presence
of the coupling to the bath and finally achieving a self-consistent solution in which the bath
is consistent with the central site. The Green’s function on the site can be written (with
Gii = G to simplify the notation)

G(iωn) =
1

G(iωn)−1− Σii(iωn)
=

1
iωn − ε0 − Σii(iωn) + ∆̃(iωn)

, (10)

where the self-energy Σii(iωn) must be calculated from a many-body solution of the inter-
acting electron problem for the central site coupled to the bath. There are various methods
called “impurity solvers” which vary from quantum Monte Carlo and exact diagonalization
algorithms that provide accurate solutions to approximate, but illuminating, solutions such
as the large N solution of the impurity problem.

Returning to the original problem, the full Green’s function for the original lattice
problem has the form

Gk(iωn) =
1

iωn − ε0 − εk − Σk(iωn)
, (11)

where εk =
∑

j tije
1k·(Ri−Rj) is the original band for lattice with U = 0 and Σk(iωn) is the

self-energy. The local single-site approximation is that the self-energy Σk(iωn) is assumed
to be local, i.e., it is k-independent and

Σk(iωn) ≈ Σii(iωn). (12)

Then the lattice Green’s function is

Gk(iωn) =
1

iωn − ε0 − εk − Σii(iωn)
, (13)

and the site Green’s function is

G(iωn) =
∑

k

Gk(iωn), (14)

This fully specifies the single-site DMFT solution provided a self-consistent solution can
be found. Since the only functions that are to be determined are Σii(iωn) and ∆̃(iωn), the
steps are:

1. Assume a form for ∆̃(iωn)

2. Calculate Σii(iωn) using a many-body “impurity solver” in the presence of the bath
represented by the ∆̃(iωn)

3. Calculate the new G(iωn) and ∆̃(iωn) and iterate

It is straightforward to show from the equations that the self-consistency condition can
be written

G(iωn) =
∑

k

1
∆̃(iωn) + G(iωn)−1 − εk

. (15)
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Figure 1: Schematic illustration of DMFT. From Held Psik review - Fig. 1

the relation of DMFT to two types of mean field models: LDA - example of the “usual”
DFT that overemphasizes delocalization - LDA+U - example adding local static mean field
terms - DMFT that includes the improved treatment of the on-site correlations together
with the dynamical mean field.

Methods for solving the self-consistent quantum impurity problem - “Impu-
rity solvers

1. Quantum Monte Carlo - the algorithm made by Hirsch and Fye for the impurity
Anderson model - well tested - the most exact approach

2. Exact diagonalization algorithms that solve the problem exactly the impurity embed-
ded in a discrete, finite set of neighbors. Requires extrapolation to a large number of
neighbors

3. Approximate, but illuminating, solutions. For example, the such as the large N solu-
tion of the impurity problem.

Hubbard Model and metal insulator transitions
Key ideas
Hubbard model is mapped on a self-consistent Anderson lattice model - a low energy

scale emerges from the Hubbard model analogous to the Kondo energy scale
Self-consistency can lead to phase transitions - metal-insulator transitions
Finds two types of solutions

Metallic with peak at Fermi energy having weight Z → 0 for U → Uc2.
Insulating for U > Uc1, where Uc1 < Uc2. The spectra are shown in Fig. 1.

First order phase transition ending in critical point in range Uc1 < U < Uc2, as shon in
Fig. 1.

This is very much like the real transition in V2O3.

Transition metal oxides - V2O3 - prototype metal-insulator transition
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Figure 2: DMFT calculation of the local spectral function for several values of the interaction
strength for the half-filled Hubbard model with a semi-circular d.o.s (from Georges RMP
review). Close to the transition, there is a clear separation of scales between the quasiparticle
peak at the Fermi energy and the distance between Hubbard bands.

(Fermi Liquid)
Metal

U

T
Semi

Conductor

Mott
Insulator

Bad
Metal

U  (T)
U  (T)c1

c1 Uc2UUc

cT

c2

Figure 3: Phases of the Hubbard model within DMFT. Dschematically the spinodal lines of
the insulating and metallic mean-field solutions. The first-order transition line is the solid
line ending in a critical point. Shaded lines are crossovers for different transport regimes.
Magnetic phases are not considered and depend on the lattice and degree of frustration.
Figure from review by Georges in 2002.
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Figure 4: Spectra of showing the metal insulator transition as a function of U . From Held
Psik review - Fig. 13

Figure showing results for doped V2O3. See Fig. 1.

Anomalous rare earth systems
Materials that are prototype systems for the Anderson and Kondo lattice models.
Results for Ce spectra given in Fig. 1
Also total energies and the volume transition in Ce, Pr, Nd.

Actinides - “band-to-localized” transition in the 5f series
The 5f series presents the difficult challenge of the intermediate case where interaction

strengths U are comparable to band widths W

Most problematic element Pu description of the “band-to-localized” transition and the
complicated phase diagram

Figure of phonon anomalies calculated before the experiments shown in Fig. 1.

Dynamical cluster approximations - toward a general theory
A general approach to the solution of the many-body problem in extended systems. A

systematic approach to treating short range correlations while including long range mean-
field effects.

Various approaches being developed.
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Figure 5: Electron addition/removal spectra for Ce in the alpha phase calculated using
DMFT - MaMahan, et al.

Figure 6: Figure of phonon anomalies calculated before the experiments From Physics
Today article.
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