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561 Fall 2005 Lecture 19

Superconductivity: Microscopic Theory of the Condensed State - BCS The-
ory

References:
Phillips, Ch 11; Tinkham, ”Intro. to Superconductivity”, Ch 2; de Gennes, ”Supercon-

ductivity of Metals and Alloys, Ch 4; Brief summaries in Aschroft and Mermin and Kittel,
”Intro. to SSP”; Green’s function descriptions in Mahan Ch 9 (second Ed.) Ch 10 (third
Ed.)

1. Cooper pairs

• Attractive interaction always leads to instability of Fermi sea to pairing

• Model Potential Vk,k′ = −V for ε0k and ε0k′ within an energy ωD of EF , V = 0 otherwise.

• A pair of electrons (or a pair of holes) of zero total momentum interacts to form a
bound state with binding energy = 2ωDexp(−1/N(0)V ).
The solution for the energy and pair wavefunction can be derived readily, as done in
de Gennes Sec. 4.1 and Phillips Sec. 11.6.1. We will follow this approach. It is also
equivalent to a summation of “ladder” diagrams s discuss by Mahan.

• Solution for model potential Vk,k′ = −V/Ω for 1
2k2 −EF < ωD, 1

2k′2 −EF < ωD, and
Vk,k′ = 0 otherwise. Here Ω is the volume.

• Leads to instability of Fermi surface at T=0 for any attractive interaction, no matter
how small.

• Note that equations are essentially the same as for the Peierls instability, but in this
case the instability is in any dimension. Note also the similarity to the Kondo effect.

• Finite temperature broadens Fermi distribution and decreases the effect - pairs unbind
at characteristic temperature, qualitatively the same as in the full BCS theory (see
notes below).

2. Attractive interaction due to phonons

• Phonons and phonon Green’s function described in Lecture 9. There we derived that
phonons cause large effects upon the self energy of electrons with energies |E−EF | <≈
ωD where ωD is a typical phonon energy, the Debye energy.
Similarly the electrons cause large effects upon the phonon energies.

• Induced electron-electron interactions

The same interactions cause scattering of electrons mediated by phonons, which leads
to an attractive interaction electrons with energies |E −EF | <≈ ωD. The interaction
is just the diagram shown in Fig. 1 which involves the phonon Green’s function. The
expression for the effective electron-electron interaction is a sum over all phonons

Heff =
∑

q,p,p′

|Vq|2
ω2 − ω2

q + iη
c+
p+qc

+
p′−qcpcp′ , (1)
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Figure 1: Diagram for the effective interaction shown at the bottom where the double wavy
line is the phonon Green’s function. This symbols and the upper diagrams are from Lecture
9.

where ω is the energy transfer between the electrons. This is described in class and
is given in more detail by Nozieres and Pines, vol. 1, p 243 ff. The same expres-
sion is given in Phillips, Eq. (11.35) derived from an approach using a similarity
transformation.

• Dynamical frequency dependent effect - i.e., a retarded interaction

• Any spin-independent boson could serve to give attraction

3. Condensed BCS pair state

• Mean field theory for pairs influenced only by the average effects of other pairs. First
we describe the coherent ground state of cooper pairs following de Gennes, 4-3.

• BCS introduced wave function that does not have definite particle number. This
greatly simplifies the theory
φ̃ = Πk(uk + vka

+
k↑a

+
−k↓)|0〉 For a large number of electrons N the fluctuations are of

order N−1/2.

• The fact that the BCS function is a state in which the wavefunction has a fixed phase
and not a fixed number is fundamental to the superconducting state. Instead of fixed
number there is a well-defined order parameter Which is the gap function ∆. More
about this in the following lecture.

• Same as usual non-interacting Fermi sea if uk = 0 and vk = 1 for k < kF . Interesting
effects come from the coherent state with uk 6= 0 and vk 6= 0 for the same k. Note
that then one must have vk 6= 0 for k > kF .
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• Self-consistent solution for pair function gives a gap in the spectrum, i.e., a condensed
bound state of the entire system
∆k = −∑

l Vklulvl = −∑
l Vkl

∆l

2((ε0
l
)2−∆2

l
)1/2

• Solution for the case of ∆k = ∆ is either:
∆ = 0 (normal metal) or ∆ = 2ωDe

1
N(0)V

• Distribution of occupation of k states. Normal amplitude nk = v2
k. ”Condensate

amplitude” fk = ukvk. See schematic figures in de Gennes and in the handwritten
notes.

4. Finite temperature calculations

• The only change from the T=0 expressions is to include Fermi factors f in the self-
consistent solution for the gap.
∆k = −∑

l Vklulvl = −∑
l Vkl

∆l

2((ε0
l
)2−∆2

l
)1/2 [1− 2f(((ε0l )

2 −∆2
l )

1/2)]

• Truncating Green’s functions equations by factorizing in a mean field fashion (exactly
the same effect as the BCS mean field theory)

• Finite temperature expressions

5. Canonical (Bogoliubov) Transformation to give ground and excited states

• Transformation that gives the same solution as the BCS theory for the ground state,
but is easier for calculation of excited states, inclusion of inhomogeneity, etc.

• The superconducting state is a condensed state with a non-zero pair expectation value
bk = 〈ak↑a−k↓〉, which is zero in the normal state, non-zero in the condensed state. In
terms of the anomalous bk, the gap is given by
∆k = −∑

l Vklbl

Thus the gap is also an order parameter.

• Pair hamiltonian
HM =

∑
kσ ε0ka

+
kσakσ −

∑
k(∆ka

+
k↑a

+
−k↓ + c.c. − ∆kb

∗
k)

• The Bogoliubov transformation expresses the electron creation and annihilation op-
erators as linear combinations pair breaking operators
ak↑ = u∗kγk0 + vkγ

+
k1

a+
−k↓ = v∗kγk0 + ukγ

+
k1

and similarly for a+
k↑ and a−k↓.

The result is a hamiltonian
HM = E0 +

∑
kσ εk(γ+

k0γk0 + γ+
k1γk1)

where E0 is the ground state energy that includes the BCS binding energy and the
excitations are non-interacting fermions with energy
ε(k) =

[
(ε0(k))2 + ∆(k)2

]−1/2

This is the energy to add an unpaired fermion which has a gap.
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• Gap for adding or subtracting single electrons Experiments: tunnelling, photoemission

See figure of photoemission data on high Tc superconductors. The first time there
has been resolution to observe the gap directly in photoemission. In this case the gap
is “d-wave”, i.e., the gap function ∆(k) has zeros and changes sign as a function of
position on the fermi surface.

6. Thermal properties

• In the mean field BCS, T enters as an average reduction of the pair strength. Self
consistent solution gives reduction for T < Tc and ∆ = 0 (normal state) for T > Tc.

• Specific Heat Jump at transition.

• Figure of mean field ∆(T ) with the famous relation ∆(0) = 1.76kBTc

7. Description in terms of Greens functions - Mahan 9.2 (10.2 in 3rd Ed.) -
Not covered here

• Ordinary and anomalous Green’s functions

• Truncating Green’s functions equations by factorizing in a mean field fashion (exactly
the same effect as the BCS mean field theory)

• Finite temperature expressions


