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561 F 2005 Lecture 20

The Superconducting Condensed State: Gauge Invariance, Flux Quantiza-
tion, Persistent Currents, Landau-Ginsburg Theory, Josephson Effect, SQUID
devices

References: de Gennes, ”Superconductivity of Metals and Alloys, Ch Ch 5-1,5-2; 6-1 -
6-5. (also p 118-121, p 234 - 246); Tinkham, ”Intro. to Superconductivity”, Ch 4,6; Brief
summaries in Aschroft and Mermin and Kittel, ”Intro. to SSP”

1. General relations for currents

• The current operator for particles with charge q and mass m has the form
j = q

m(p− q
eA); p = −i-h∇

• If a many-body state φ0 has current j = 0, then the state φ = φ0exp(i[S(r1)+S(r2)+
...]) has current
j = q

m〈φ|(p− q
cA)|φ〉 = nq

m (-h∇S − q
cA) .

• Note: Only the combination (-h∇S − e
cA) enters the expressions. S and A are each

subject to gauge transformations. We will use this in general property in several ways.

• BCS theory and experiment lead to the “particles” being pairs with charge 2e and
mass 2me

2. Bogoliubov Equations and Gauge Invariance:

• Generalizing the Bogoliubov transformation to spatially varying u(r) and v(r). If
Delta(r) = V

∑
n v∗n(r)un(r)(1 − 2fn) is the pair potential operator as before, but

generalized to be a (slowly varying) function of position, then the Bogoliubov equa-
tions become:

εu(r) = H0u(r) + Delta(r)v(r)
εv(r) = −H0v(r) + Delta∗(r)u(r)

• Simple example of constant current with Delta(r) = |Delta|exp(i2ir · r)
Example of ”critical current” in simple case

• Gauge invariance: Physical quantities are invariant to
A(r) → A(r) +∇χ(r) and Delta(r) → Delta(r)exp(i2e

-hc
χ(r))

• Restriction: Delta(r) must be single valued

3. Flux Quantization and Persistent Currents:

• For a multiply connected superconductor of macroscopic dimensions. In the interior
there are no currents, but supercurrents can flow of the boundary.

• The condition that Delta(r) is single valued leads to quantization of flux through any
hole completely surrounded by the superconductor.
Flux Φ = NΦ0, Φ0 = ch

2e
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• Persistent currents must flow in the ring if the flux remains the same in the hole. But
the flux can escape only if it passes through the superconductor. For a thick type I
material the probability of a region becoming normal to let the flux escape exceeds the
age of the universe (estimate in Kittel). Thus the ”rigidity” of the SC state against
an H field, together with the quantization condition, leads to persistent currents.

• Flux quantized through vortices of Type II superconductor

• Similar ideas will appear later in the quantum Hall effect, the Bohm-Aharonov effect,
and general aspects of boundary conditions on wavefunctions.

4. Landau-Ginsburg Theory for the Free Energy

• Well before the BCS theory, Landau and Ginsburg recognized that the superconductor
must be described by a complex order parameter Ψ, and that near Tc they could
describe the free energy using the theory of phase transitions. (We will use the notation
Ψ → ∆ since the BCS order parameter turns out to be the correct description, and
we will use mass = 2me and charge = 2e, which was follows from the BCS theory.)

Free energy valid near T = Tc where all length scales for the SC state are long:

FLG = FN + 1
8πh2 + A(T )|∆|2 + 1

2B(T )|∆|4 + C|(−i∇− 2e
c A)∆|2

Key points: Exactly like a non-linear generalization of Schr. Eq. for a single particle
if we set C → 1

2m , where m is the appropriate mass (which is m = 2me as shown by
the NCS theory). The magnetic field is included in the vector potential A that enters
only in KE term. This describes the spatially varying superconducting state with a
parameterized form that is valid near Tc.

• Two lengths:

– Coherence length: ξ(T ) ∝ (Tc − T )−0.5

– Penetration Depth: λ(T ) ∝ (Tc − T )−0.5

– Landau-Ginsburg Parameter: κ = ξ(T )
λ(T ) independent of T

– κ >> 1 → Type I; κ << 1 → Type II

• In simplest case (no scattering) of BCS,
ξ(T ) = 0.74ξ0( Tc

Tc−T )
1
2 ; λ(T ) = 0.707λL( Tc

Tc−T )
1
2

5. Josephson Effect
Discussed by deGennes on p. 118 and following.

• Tunneling of pairs - isomorphic to a quantum particle in a 1-d chain

• Supercurrent through barrier I = −4 e
hJ0sink.

• AC current for a constant voltage I ∝ sin(2eV
h t).

• General result for weak links I ∝ sin(∆φ)
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6. SQUID devices
Interference Effects between two weak links
Sensitive to magnetic flux enclosed

7. Is a Gap required for superconductivity? No!
Examples where a gap clearly is not present:

• In any superconductor at T¿0, there are low energy electronic excitations (as found
in specific heat) yet there are persistent currents

• In the mixed state of a type I or type II superconductor, the pairs are in intimate
contact with normal regions which have no gap

• Josephson Effect - supercurrents flow through normal regions

• ”Gapless” superconductivity in samples with magnetic impurities

The stability of the supercurrent is due to the collective nature of the state; macroscopic
numbers of pairs together form the SC state, which can decay only by breaking up the entire
state. See the clear statement in Aschroft and Mermin: the gauge arguments that ”show”
there must be persistent current even without a gap are a result of this cooperative effect


