Welcome to the Fall 2019 web page for PHYS561


Physics 561 Course Syllabus

Fall 2019

T, Th 11:00-12:20 Room 158 Loomis

Instructor: P. Phillips, Rm. 2121 ESB


Textbook: P. Phillips, Advanced Solid State Physics, 2nd Edition

Cambridge University Press, 2017


Office Hours:


Philip Phillips (2121 ESB) :  W: 1:00-2:30


Bikash Padhi (3rd Floor Lounge of ESB):  Th 3-4:30 



A. Many-Body Methods

  1. Introduction: Spontaneous Symmetry Breaking
  2. Free-electron Gas
  3. Tight-binding
  4. Born-Oppenheimer Approximation
  5. 2nd Quantization and Field Operators
  6. Hartree States/Hartree-Fock           Approximation/Koopman’s Theorem
  7. Interacting Electron Gas
  8. Beyond H.F./Wigner Interpolation


B. General Many-Body Phenomena

  1. Phenomenology on Local Magnetic Moments in Metals
  2. Green Functions
  3. Anderson Model
  4. Mean Field Solution Using Equations of Motion
  5. Relation to Kondo Model
  6. Kondo problem, scaling and all that
  7.  Phase Shifts Lecture Notes
  8. Handouts (see Asymptotic Freedom/Politzer)
  9. Handouts (see Asymptotic Freedom/Gross/Wilzcek)
  10. Plasma Oscillations
  11. Handouts (see Bohm-Pines reference to Collective Coordinates)
  12. RPA
  13. Dielectric Response Function ε(k,ω)
  14. Stopping Power of a Plasma
  15. Phonons and e-phonon Interaction
  16. Ultrasonic Attenuation
  17. Electrical Conduction (Drude Formula,
    et al. . . . )
  18. Boltzmann Transport Equation, Hydrodynamic Limit, Sound Propagation
  19. Bosonization of Electron Gas
  20. Luttinger liquids
  21. Fermi Liquid Theory, RG for the Fermi surface, Luttinger's non-theorem
  22. Handouts (see Polchinski's paper on RG for Fermi surfaces)

C. Superconductivity

  1. General Properties of Type I and Type II Superconductors
  2. London Equations
  3. Handouts (see Weinberg's paper on superconductivity)
  4. Energy Gap, Penetation Depth, Ultrasonic Attenuation
  5. NMR (Hebel-Slichter Peak)
  6. BCS Model
    a. Phonon-induced Cooper Pair

    b. Global Pair State
    c. Normal Ground State Instability        
    d. Gap Equation

    e. Quasi-particle Excitations
    f. Thermodynamics
    g. Nuclear Spin-lattice Relaxation


D. Localization and Quantum Hall physics

  1. Anderson Localization
  2. Weak Localization
  3. Integer Quantum Hall Effect
  4. Topological Insulators
  5. Fractional Quantum Hall Effect

 E. Mott physics

     1. Mott insulators: Mottness

     2. Hubbard Model

     3. Antiferromagnetism

     4. Hatsugai-Khomoto Model


E. Course Requirements

  1. Five Homework Sets (approximately) (1/3 of grade)
  2. Take-home midterm (1/3 of grade)
  3. Take-home Final (1/3 of grade)