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Chapter 4 
 
                                                    DIRAC EQUATION 
 
The non-relativistic Schrödinger equation was obtained by noting that the 
Hamiltonian 
 

2

2
PH m=  (1) 

 
can be transformed into an operator form with the substitutions 
 

 ( 1,  1H i c
t

)∂
→ =

∂
=  (2) 

P i→− ∇  
 

resulting ( ) (
2

,  ,
2

i x t x
t m
ψ ψ∂ ∇

=
∂

) t  (3) 

 
This equation is linear in the time-derivative and quadratic in the space derivative, 
and is manifestly non-covariant under Lorentz transformation.  Clearly, the left-
hand side and the right-hand side of Equation 3 transforms differently under 
Lorentz transformation. 
 
We briefly review Lorentz transformation. 
 
Space-time coordinates (t, x, y, z) are denoted by the contravariant 4-vector 
 

( ) ( )1 2 3,  ,  ,  ,  ,  ,   ox x x x x t x y zµ ≡ ≡  
 
The covariant 4-vector, xµ, is 
 

( ) ( )1 2 3,  ,  ,  ,  - ,  - ,  -ox x x x x t x y z g xνµ µ≡ ≡ ν=  

 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

gµν

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 (4) 

gµυ is the metric tensor 
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The Lorentz transformation relates xµ′ to xµ: 
 

 ( )x xµ µ ν
ν

′ = Λ  (5) 
 
For an inertial system S′ moving  along z with c

ν β= , we have 
 

 

0 0
0 1 0 0
0 0 1 0

0 0

γ βγ

βγ γ

−⎡ ⎤
⎢ ⎥
⎢ ⎥Λ =
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (6) 

where ( )
1

2 21γ β
−

= −  
 
Any set of four quantities which transform like xµ under Lorentz transformation is 
called a four-vector.  The total energy E and the momentum P  form a four-vector 
 
 ( ) ( )1 2 3,  ,  ,  E,  oP P P P P Pµ = =  (7) 
 
Scalar product of two 4-vectors are invariant under Lorentz transformation 
 
 A B g A Bµ ν µ

µ µν=  (8) 
 
Some examples: 2 2x x x x t xµ

µ= = −i  

 2 2EP P P P Pµ
µ= = −i  

  Ex P x P t x Pµ
µ= = −i i  

 

The ,  H i P i
t
∂

→ →−
∂

∇  transcription is Lorentz covariant 

 

 P i i
x

µ µ

µ

∂
→ =

∂
∂  

 
One can readily obtain the continuity equation from the Schrödinger equation: 
 



P570  3 

 0J
t
ρ∂
+∇ =

∂
i  (9) 

 

where ( )* 0,  * *
2
iJ
m

ρ ψ ψ ψ ψ ψ ψ= ≥ = − ∇ − ∇  

 
ρ is the probability density, and J  is the current density. 
 
Note that the continuity equation can be written in a covariant form 
 
 ( )0,   ,  j jµ µ

µ ρ∂ = = J  (10) 
 
The early attempt for formulating a Lorentz covariant equation started from the 
relativistic energy-momentum relation 
 
 E2 = P2 + m2

 

with the E ,   i P i
t
∂

→ →
∂

− ∇  transcription, one obtains 

 

 (
2

2 2
2 m

t )ψ ψ∂
− = −∇ +
∂

 (11) 

 
which is the relativistic Schrödinger equation, or the Klein-Gordon equation. 
 
Equation 11 can be written as 
 
 ( )2 2 0m ψ+ =  (12) 

where 
2

2 2
2t x x

µ
µµ

µ

∂ ∂ ∂
= −∇ = = ∂ ∂
∂ ∂ ∂

 (13) 

 
is the d’Alembertian operator, a Lorentz invariant operator. 
 
From the Klein-Gordon equation, one can readily derive the following continuity 
equation: 
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 0J
t
ρ∂
+∇ =

∂
i  

 

 
( )

(
**

*  *
* *

i
t t j i

J i

µ µ µ

φ φρ φ φ
)φ φ φ φ

φ φ φ φ

∂ ∂ ⎫⎛ ⎞= −⎜ ⎟ ⎪∂ ∂⎝ ⎠ = ∂ − ∂⎬
⎪= − ∇ − ∇ ⎭

 
( )

( )

14

15
 

 
For a plane-wave solution to Klein-Gordon equation 
 
 ( )Ei t P xNeφ − −= i  (16) 
We have 
 22 ,   2 2E N J P Nρ = =  (17) 
 

Since ( )
1

2 2 2E P m= ± + , ρ can be negative for the E < 0 solutions. 
 
The origin of this problem is the second derivative in time for the term 2 2t∂ ∂ . 
 
Dirac tried to find a relativistic covariant equation with a positive-definite 

probability density.  He assumed an equation linear in 
t
∂
∂

 and in ∇ : 

 

 
( )

1 1 2 2 3 3

H P m

P P P

ψ α β ψ

Pα α α α

= +

= + +

i

i
 (18) 

 
It is evident that α’s and β cannot be just numbers, because the equation would not 
be invariant even under spatial rotation.  Dirac proposed that the equation be 
considered as a matrix equation.  It should satisfy ( )2 2 2H P mψ ψ= + . 
 
Applying H to Equation 18 leads to 
 

( ) ( )2 2 2 2 2
i i i j j i i j i i i

i i j i

H P PP mP mψ α αα α α α β βα β
≠

⎡ ⎤
= + + + + +⎢ ⎥
⎣ ⎦
∑ ∑ ∑ ψ  
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Therefore 
{ } { },  2  ;  ,  0i j ij iα α δ α β= =  

2 2 1iα β= =  
 
What are the other properties of αi, β? 
First, αi, β are Hermitian, since H is Hermitian (see Equation 18). 
 
In addition, Tr(αi) = 0, Tr(β) = 0. This can be shown by the anticommutator 
relations in Equation 19.  Recall Tr(AB) = Tr(BA) 
 

( ) ( ) ( ) ( )2
ii iTr Tr Tr Tr iα α β βα β α ββ= = = −  

 ( ) ( ) 0i iTr Trα α= − ⇒ =  (20) 
 
Similarly, Tr(β) = 0.  Therefore, αi, β are traceless, Hermitian matrices. 
 
The eigenvalues of αi, β can only be +1 or -1 since αi

2 = β2 = 1. 
 
  (21) 2 2 1i ix x x x xα λ α λ λ= ⇒ = = ⇒ = ±
 
The trace of a matrix is equal to the sum of all its eigenvalues.  Therefore, for a 
traceless matrix having +1, -1 as possible eigenvalues, it must have an even 
number of dimension n.  n cannot be 2, since only three traceless n = 2 independent 
matrices exist ( ),  ,  ,  for examplex y zσ σ σ , and we need four traceless matrices to 
accommodate 1 2 3, , ,α α α β . 
 
n = 4 is the smallest possible dimension for αi, β.  The Pauli-Dirac representation is 
given as 

 
0

0
i

i
i

σ
α

σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

     
0

0
I

I
β

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (22) 

 
The Dirac equation P m Hα β ψ ψ⎡ ⎤+ =⎣ ⎦i  can be expressed in a more covariant 
fashion by multiplying β from the left: 
 
 ( )( ) 0H P mβ βα ψ− − =i  (23) 
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Introducing ( ),  µγ β βα= , Equation 23 becomes 
 
 ( ) 0P mµ

µγ ψ− =  (24) 
 
P iµ µ= ∂ , therefore 
 

 ( ) 0     recall  i m
x

µ
µ µγ ψ µ

∂⎛∂ − = ∂ =⎜ ∂⎝ ⎠
⎞
⎟  (25) 

Explicitly, 

 
00

 ;      
00

io i

i

I
I

σ
γ γ

σ
⎛ ⎞⎛ ⎞

= = ⎜⎜ ⎟ −−⎝ ⎠ ⎝ ⎠
⎟  (26) 

 
γµ’s satisfy the anticommutation relation 
 
 γµ γν + γν γµ = 2gµνI (27) 

( ) ( )2 2
,      o iI Iγ γ= = −  

 
Although γo is Hermitian, (γo)+ = γo, γi is anti-Hermitian: 
 (γi)+ = -γi (28) 
 
However, 
 (γµ)+ = γo γµ γo     and     γµ = γo (γµ)+ γo (29) 
 
To obtain the adjoint Dirac equation, one takes Hermitian conjugate of Equation 25 
 ( ) 0i mµ

µψ γ ψ
++− ∂ − =+  (30) 

 
Since γµ is not Hermitian for µ = 1, 2, 3, it is useful to multiply Equation 30 from 
the right by γo to yield (using Equation 29) 
 
 ( ) ( ) 0oi mµ

µ ψ γ γ ψ γ+ +− ∂ − =o  (31) 
 
Define oψ ψ γ+=  (32) 
the adjoint Dirac equation is 0i mµ

µψγ ψ∂ + =  (33) 
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or Pψ ( ) 0m+ =  (34) 

where P Pµ µγ=  
 
and P acts to its left in Equation 34. 
 
One is now ready to check the continuity equation and the probability density and 
current density for the Dirac equation. 
 
Multiplying Equation 25 by ψ  to its left, and Equation 33 by ψ to its right, we 
obtain 

 
0

0

i m

i m

µ
µ

µ
µ

ψγ ψ ψ ψ

ψγ ψ ψψ

∂ − =

∂ + =
 (35) 

 
Adding these two equations yields 
 
 ( ) 0µ

µ ψγ ψ∂ =  (36) 
 
Define jµ µψγ ψ=  (37) 
 
the continuity equation 0jµµ∂ =  follows. 
 

Note that  
4

2

1

0o o
i

i

jρ ψγ ψ ψ ψ ψ+

=

= = = = ≥∑  

 
Hence the probability density is indeed positive definite for the Dirac equation. 
 
As will be shown later jµ transforms like a 4-vector, and ρ = jo is not a Lorentz 
invariant.  Rather, it is the time component of a 4-vector.  It is not too surprising 
that ρ is not a Lorentz invariant, since a probability density satisfies the following: 
 
 3  constd xρ =∫  (38) 
 
Since d3x undergoes Lorentz contraction, it is natural that ρ must also change under 
the Lorentz transformation in order to preserve the integral. 
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Each component of the four Dirac wave function components satisfies the Klein-
Gordon equation.  Multiplying Equation 25 from the left by i µ

µγ ∂ , we have 
 
  (39) 2 0mµ ν

µ νγ γ ψ ψ− ∂ ∂ − =
or 

 ( ) 21 0
2

mµ ν ν µ
µ νγ γ γ γ ψ⎡ ⎤+ ∂ ∂ + =⎢ ⎥⎣ ⎦

 

hence 
 ( )2 0g mµν

µ ν ψ∂ ∂ + =  
or 
 ( )2 0mµ

µ ψ∂ ∂ + =  (40) 
 
Note that Equation 40 is understood as four separate uncoupled equations for each 
component of ψ. 
 
We turn next to the solutions to the Dirac equation for a free particle. 
 
Because of Equation 40, the Dirac equation admits a free-particle solution as 
follows 
 ( ) iP xu P eψ −= i  (41) 
 
where u(P) is independent of x and is a 4-component spinor.  Substituting Equation 
41 into Equation 25 gives 
 
 ( ) ( ) 0,      or     P m u P Pµ

µγ − = ( ) ( ) 0m u P− =  (42) 
 
Eq. 42 is the Dirca equation in the momentum space. Note that Pµ  in Eq. 42 is no 
longer a differential operator (just a multiplicative operator). We now simply write 

.  Similarly, the adjoint equation is readily obtained: ( )  as  u P u
 
 u P( ) 0m− =  (43) 
 
We now try to find solutions to the Dirac Equation. For a Dirac particle at 
rest, 0p = , and Equation 42 becomes 
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 ( )E 0o m uγ − =      ( )Ei tueψ −=  (44) 
or 

 o

m
m

Eu m u u
m

m

γ

⎛ ⎞
⎜ ⎟
⎜= =
⎜ −
⎜ ⎟−⎝ ⎠

⎟
⎟

0
0
0
1

 (45) 

 
The eigenvectors are 

  (46) 1 2 3 4

1 0 0
0 1 0

;      ;      ;      
0 0 1
0 0 0

u N u N u N u N

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = = =
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 
with eigenvalues m, m, -m, -m, respectively. N is the normalization factor. 
 
To obtain the solutions for 0p ≠ , one can either solve the Dirac Equation directly, 
or by boosting the ( )0pψ =  solution to another inertia frame moving with p−  
with respect to the rest frame. 
 
It is instructive to examine the method involving the Lorentz boost.  To use this 
method, we need to first address the question – How does ψ transform under 
Lorentz transformation? Let us suppose that in reference frame S, the Dirac 
equation is written as 
 

 ( ) 0i m x
x

µ
µγ ψ∂⎛ ⎞− =⎜ ⎟∂⎝ ⎠

 (47) 

 
In another frame S′, where x xµ µ ν

ν
′ = Λ , the Dirac equation becomes 

 

 ( ) 0i m x
x

µ

µ
γ ψ

⎛ ⎞∂ ′ ′− =⎜ ⎟′∂⎝ ⎠
 (48) 

 
Now, 
 ( ) ( ) ( )x x S xψ ψ ψ′ ′ ′= Λ =  (49) 
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and 
 ( ) ( )1x S xψ ψ− ′ ′=  (50) 
 
Substituting Equation 50 into Equation 47 and noting 
 

 x
x xx x

ν
ν
µµ µν ν

′∂ ∂ ∂ ∂
= = Λ

∂ ∂′ ′∂ ∂
 (51) 

 
Equation 47 becomes, upon multiplying S from the left, 
 

 ( )1 0iS S m x
x

µ ν
µ ν

γ ψ−⎛ ⎞∂ ′ ′Λ −⎜ ⎟′∂⎝ ⎠
=  (52) 

 
Requiring Equation 52 to be identical to Equation 48 gives 
 

 1iS S i
x x

µ ν µ
µ ν µ

γ γ−∂ ∂
Λ =

′ ′∂ ∂
 

or 
 1S Sµ ν ν

µγ γ−Λ =  
Equivalently, 
 1S Sν µ ν

µγ γ−Λ =  
 
Our task is to find S, which is a 4 x 4 matrix, for any Lorentz transformation Λ, 
such that Equation 53 is satisfied. 
 
We consider three cases of Lorentz transformation: 
 
 1)  Lorentz boost 
 2)  Spatial rotation 
 3)  Space inversion (parity operation) 
 
The cases 1) and 2) can be built up with infinitesimal Lorentz transformations. 
 
Consider an infinitesimal Lorentz transformation 
 
 ( )nI νν ν ν ν

µ µ µ µ µ
δ ω δ ωΛ = + ∆ = + ∆  (54) 
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∆ω is an infinitesimal quantity, and In is a 4 x 4 matrix corresponding to a specific 
Lorentz transformation. 
 
For a transformation to S′ moving along the x-axis with an infinitesimal velocity 
∆ω = ∆β, we have 

  (55) 

0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0

          
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

I Iν νµ
µ

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢−⎢ ⎥ ⎢= =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 
Similarly, for a rotation through an angle ∆ω around the z-axis, the correspond Iνµ  
is 

  (56) 

0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0

          
0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0

I Iν νµ
µ

=

⎡ ⎤ ⎡
⎢ ⎥ ⎢+ −⎢ ⎥ ⎢=
⎢ ⎥ ⎢−
⎢ ⎥ ⎢
⎣ ⎦ ⎣

⎤
⎥
⎥
⎥
⎥
⎦

 
In order to satisfy the relation for Lorentz transformation 
 
 ν µ ν

µ σ σδΛ Λ =  (57) 
 
the infinitesimal transformation, Equation 54, satisfies 
 
 I Iµν νµ= −  (58) 
 
as can be readily verified for Equations 55 and 56. 
 
There are 6 independent I µν , 3 for boosts and 3 for rotations. 
 
Expand S in powers of ∆ω: 
 

 1
4
iS µν

µνσ ω= − ∆  (59) 

 
σµν is the generator for the corresponding infinitesimal Lorentz transformation. 
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Inserting Equation 59 and Equation 54 into Equation 53, we have 
 
 2   ,  i g gν ν ν

α β β α αβγ γ γ σ⎡ ⎤ ⎡− =⎣ ⎦ ⎣ ⎤⎦  (60) 
 
which is satisfied by 

 ,  
2
i

µν µ νσ γ γ⎡ ⎤= ⎣ ⎦  (61) 

 
The anti-symmetric tensor σµν has the following non-vanishing elements 
 
 oi io iiσ σ α= − = −  (62) 
for boost and 

 
0

0
k

ij ji
k

σ
σ σ

σ
⎡ ⎤

= − = ⎢ ⎥
⎣ ⎦

 (63) 

for rotation ijk cyclic. 
 
We are ready to construct a finite spinor transformation S from successive 
infinitesimal transformation 
 

 
1

4

exp
4

N

n
N

n

iS I
N

i I

µν
µν

µν
µν

ω σ

ωσ

→∞

⎛ ⎞= −⎜ ⎟
⎝

⎛ ⎞= −⎜ ⎟
⎝ ⎠

l i m
⎠  (64) 

 
To prove Equation 60 
 

 
1

4

1
4

iS

iS

αβ
αβ

αβ
αβ

σ ω

σ ω+

= − ∆

= + ∆
 

 ν ν ν
µ µ µδ ωΛ = + ∆  

Since  1   S Sν µ ν
µ γ γ−Λ =

We have ( ) 1 1
4 4
i iν ν µ αβ ν αβ

µ µ αβ αβδ ω γ σ ω γ σ ω⎛ ⎞ ⎛+ ∆ = + ∆ − ∆⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠
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or  
4 4
i iν ν µ ν ν αβ αβ ν

µ αβ αβγ ω γ γ γ σ ω σ ω γ+ ∆ = − ∆ + ∆  

 (ignoring (∆ω)2 term) 
 

Therefore  
4
iν µ αβ ν ,µ αβω γ ω γ σ⎡ ⎤∆ = − ∆ ⎣ ⎦  (a) 

but 1 
2

ν µ νµ νβ να
µ µ β αω γ ω γ ω γ ω γ⎡ ⎤∆ = ∆ = ∆ + ∆⎣ ⎦  

 1
2

νβ αν
β αω γ ω γ⎡ ⎤= ∆ − ∆⎣ ⎦  

 1   ,  
2

g gν ν ν
α β β α αβγ γ γ σ⎡ ⎤ ⎡= − =⎣ ⎦ ⎣ ⎤⎦  (b) 

 
Inserting (b) into (a), we obtain 
 
 2   ,  i g gν ν ν

α β β α αβγ γ γ σ⎡ ⎤ ⎡− =⎣ ⎦ ⎣ ⎤⎦  
 
For a Lorentz boost along the x-axis, 
 

 
( ) ( )

( )

01

1

exp  
2

exp
2

ix x

x

ψ ω σ ψ

ωα ψ

⎡ ⎤⎛ ⎞′ ′ = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (65) 

 

where tanh ω = β, 
2

1cosh  
1

ω γ
β

=
−

= , sinh ω = βγ 

 
Similarly, for a rotation around the z-axis of an angle ω: 
 

 ( ) ( )12exp  
2
ix xψ ω σ ψ⎡ ⎤′ ′ = ⎢ ⎥⎣ ⎦

 (66) 

where 312

3

1 0
0 1

0 1
0 1

σ
σ

σ

⎡ ⎤
⎢ ⎥−⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥−⎣ ⎦
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Equation 66 is similar to the rotation of two-component Pauli spinor 
 

 ( ) ( ) ( )2
i

x e
ω σ

xψ ψ′ ′ =
i

 (67) 
 
Are the spinor transformation S unitary? 
 
For spatial rotation, S = SRot, S is unitary, since 
 

 ( ) ( ) 12 2
ij iji i

Rot RotS e e Sω σ ω σ
+

− −+ = = = −  (68) 
but for Lorentz boost 
 

 ( ) ( ) 12 2i i

Lor Lor LorS e e S S
ω ωα α+− −+ = = = ≠ −

o

 (69) 
 
Nevertheless, both SRot and SLor have the property 
 
 1  oS Sγ γ− +=  (70) 
 
which can be verified by expanding SRot, SLor in power series. 
 
 
Here is proof for β = tanh ω 
 
Consider a Lorentz boost along the x-axis 
 

 

0 1 0 0
1 0 0 0

0 0 0 0
0 0 0 0

I Iν µ

−⎡ ⎤
⎢ ⎥−⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 2

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

I

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

          I3 = I 

 1
N

I x
N

ν
ν µ

µ

ωχ
→∞

⎛ ⎞′ = +⎜ ⎟
⎝ ⎠

l i m  
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( )
( )

( )2 2

cosh sinh

1 cosh sinh

Ie x

I I x

I I I

νω µ

µ

ν µ
µ

ν
xµ

µ

ω ω

ω ω

=

= +

= − + +

 

cosh sinh 0 0
sinh cosh 0 0

0 0 1
0 0 0

0
1

x x

ω ω
ω ω

−⎡ ⎤
⎢ ⎥−⎢ ⎥′ =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

t′ = (cosh ω) t – (sinh ω) x 
x′ = -(sinh ω) t + (cosh ω) x 

 
We also have t′ = γ (t – βx) 

x′ = γ (-βt + x) 
 
Therefore 

γ = cosh ω γβ = sinh ω β = tanh ω 
 
The fact that SLor is not unitary (Equation 69) should not be too surprising.  This 
simply reflects the situation that ψ+ψ is not a conserved quantity in a Lorentz boost. 
 
We now consider space inversion: 
 

1
1

1
1

ν
µ

⎛ ⎞
⎜ ⎟−⎜ ⎟Λ =
⎜ ⎟−
⎜ ⎟−⎝ ⎠

 

 
This discrete transformation cannot be constructed out of infinitesimal 
transformation.  Rather, we rely on the definition of S (Equation 53) to find the 
parity transformation Sp for the Dirac spinor ψ. 
 
Equation 53 and Equation 71 imply 
 

 
1

1

o o
p p

i
p p

S S

S S i

γ γ

γ γ

−

−

=

= −
 (72) 
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This can be satisfied with 
 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

o
pS γ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥−
⎢ ⎥−⎣ ⎦

 

 
Note that Sp also satisfies Equation 70 since 
 

1 o
p pS S oγ γ− +=  

 
For a Dirac particle at rest, Equation 73 shows that U1 and U2 have positive parity 
while U3 and U4 have negative parity (Equation 46)! 
 
Having established the properties of S, we can show that ψψ  transforms like a 
scalar, while µψγ ψ  transforms like a 4-vector under Lorentz transformation. 
 

 
( ) ( ) ( )( ) ( )
( ) ( )1 1

o o

o

ox x S x x S

x S x S

ψ ψ γ ψ γ ψ

ψ γ ψ

++ + +

+ − −

′ ′ ′ ′= = =

= =

γ
 (74) 

 
Therefore 
 
 ( ) ( ) ( ) ( ) ( ) ( )1x x x S S x x xψ ψ ψ ψ ψ ψ−′ ′ ′ ′ = =  (75) 

 ψψ⇒  is a scalar 
( ) ( ) ( ) ( )
( ) ( )

( ) ( )( )

1x x x S S

x x

x x

µ µ

µ ν
ν

µ ν
ν

xψ γ ψ ψ γ ψ

ψ γ ψ

ψ γ ψ

−′ ′ ′ ′ =

= Λ

= Λ

 

  µψγ ψ⇒  is a 4-vector 
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To obtain the plane-wave solution to the Dirac equation for a particle moving 
along the x-axis with velocity β, we boost along –x with a velocity of –β. 
 

 
( ) 01

1

2
01 1

2
1

;      

cosh sinh
2 2

i
S e i

e

ωσ

ω α

σ α
ω ωα

−

−

= =

= = −

−
 (76) 

where tanh ω = -β 
 
The spinors uν(p) are 

( ) ( )1cosh sinh 0
2 2

u p Uν νω ωα⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 ( )

1 0 0 tanh
2

0 1 tanh 0
2cosh 0

2 0 tanh 1 0
2

tanh 0 0 1
2

uν

ω

ω
ω

ω

ω

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎛ ⎞= ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎢ ⎥−
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎣ ⎦

 (77) 

where 

 
( )

12 2 2

tanhtanh
2 1 1 tanh 1 1

ω ω
ω β

−⎛ ⎞ = =⎜ ⎟
⎝ ⎠ + − + −

β  

 1 1 (1 ) E1
m
m m

Pβ βγ βγ
γ γγ

− − − −
= = = =

+ + ++
 (78) 

and  

 1 1
2 2

2

1 1cosh
2 221 tanh

2 1

m
m

ω

ω
γ

+⎛ ⎞ = = =⎜ ⎟
⎝ ⎠ ⎛ ⎞ ⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠⎝ ⎠ ⎝ ⎠

E  

 
using Equation 78, Equation 77 becomes 
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( ) ( )

1 0 0 E
0 1 0E E 0

2 0 1 0E
0 0 1E

Px
m

Px
m mu p u

Pxm
m

Px
m

ν ν

⎡ ⎤
+⎢ ⎥

⎢ ⎥
+ +⎢ ⎥= ⎢ ⎥

⎢ ⎥+
⎢ ⎥
⎢ ⎥+⎣ ⎦

 (79) 

For a boost along an arbitrary direction 
 

 

0

0 0 0

0 0 0

0 0 0

PyPx Pz
p p p

Px
p

I
Py

p
Pz

p

µ
ν

−⎡ ⎤− −
⎢ ⎥
⎢ ⎥
−⎢ ⎥
⎢ ⎥= ⎢ ⎥−
⎢ ⎥
⎢ ⎥
⎢ ⎥−
⎢ ⎥⎣ ⎦

 (80) 

 
 
and 
  
 

ˆ
2 PS e

ω α−= i  (81) 
 
 

( ) ( )

1 0
E E

0 1
E E E 0

2 1 0
E

0 1
E E

Pz Px iPy
m m

Px iPy Pz
m m mu p u

Pz Px iPym
m E m

Px iPy Pz
m m

ν ν

−⎡ ⎤
⎢ ⎥+ +⎢ ⎥

+ −⎢ ⎥
⎢ ⎥+ + += ⎢ ⎥−⎢ ⎥

+ +⎢ ⎥
⎢ ⎥+ −
⎢ ⎥

+ +⎣ ⎦

 (82) 

 
 
 
The four solutions of the spinors are 
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( ) ( )

( ) ( )

1 2

3 4

1 1
0 0

E E;     u
2 2E E

E

E E
E E;     u

E E2 2
1 0
0 1

m mPz Px iPyu p p
m mm m

Px iPy Pz
m

Pz Px iPy
m m

Px iPy Pzm mu p p
m mm m

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢

+ +⎢ ⎥ ⎢ −= =⎢ ⎥ ⎢+ +⎢ ⎥ ⎢
+ −⎢ ⎥ ⎢

⎢ ⎥ ⎢+⎣ ⎦ ⎣
−⎡ ⎤ ⎡

⎢ ⎥ ⎢+ +⎢ ⎥ ⎢
+ −+ +⎢ ⎥ ⎢= =⎢ ⎥ ⎢+ +

⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

E m

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥+ ⎦
⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

0
0
0
1

=

u⎟

 (83) 

 
 
Note that Equation 83 is obtained by using a normalization: 
 
 

  (84) 1 2 3 4

1 0 0
0 1 0

;      ;      ;      
0 0 1
0 0 0

u u u u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 
 
We can also solve the Dirac equation directly: 
 

 ( )E
m P

u P m u
P m

σ
α β

σ
⎛ ⎞

= + = ⎜
−⎝ ⎠

ii
i

 (85) 

 
A

B

u
u

u
⎛ ⎞

= ⎜
⎝ ⎠

⎟ , where uA, uB are two-component wave functions 

E A A

B B

u um P
u uP m

σ
σ
⎛ ⎞⎛ ⎞ ⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

i
i
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We obtain the coupled equations 
 

( )EB APu m uσ = −i  
 and (86) 

( )EA BPu m uσ = +i  
 
A possible solution to Equation 86 is 
 

For E > 0, ( )

( )

( )

( )

( )

1

2

1
0

,      
0
1

S

S

S

xx
u N P x xE m

σ

⎛ ⎞
=⎛ ⎞ ⎜ ⎟
⎝ ⎠⎜ ⎟= ⎜ ⎟ ⎛ ⎞⎜ ⎟ =+⎝ ⎠ ⎜ ⎟
⎝ ⎠

i  

S = 1, 2 

For E < 0, ( )
( )

( )

2
S

S

S

P x
u N E m

x

σ
+

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

i
 

 
Explicitly: 
 

( ) ( )

( ) ( )

1 2

3 4

1 0
0 1

;      ;      E 0

;      ;      E 0

1 0
0 1

Pz Px iPyu p N u p N
E m E m

Px iPy Pz
E m E m

Pz Px iPy
E m E m

Px iPy Pz
u p N u p N

E m E m

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−= =⎜ ⎟ ⎜ ⎟+ +⎜ ⎟ ⎜ ⎟

+ −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

+ +⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟

+ −⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

>

<

 (87) 
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Note that u3(p), u4(p) from Equation 87 are different from those obtained by the 
boost method (Equation 83).  Apart from a difference in the normalization factor 
N, 
 

( ) ( ) ( ) ( )3,4 3,4
boost directu p u= − p , where ( ),p E p=  

 
Note that E > 0 for ( ) ( )3,4

boostu p , while E < 0 for ( ) ( )3,4
directu p . 

 
In order to interpret the E < 0 solutions for u(3,4)(p), we examine the charge-
conjugation transformation on the Dirac equation. 
 
The Dirac equation for an electron in an EM field can be obtained with the gauge 
substitution 
 
 D iqAµ µ µ∂ → ≡ ∂ + µ

A

 (89) 
 
For an electron with charge q = -e (e > 0), we have 
 
 i i eµ µ µ∂ → ∂ +  (90) 
 
The Dirac equation for an electron becomes 
 
 ( ) 0i eA mµ

µ µγ⎡ ψ⎤∂ + − =⎣ ⎦  (91) 
 
The Dirac equation for a positron, ψc, would be 
 
 ( ) 0ci eA mµ

µ µγ⎡ ψ⎤∂ − − =⎣ ⎦  (92) 
 
Our task is to find the transformation linking ψ to ψc.  To change the relative sign 
between the µ∂  and Aµ terms in Equation 91, one can take a complex conjugate of 
Equation 91 
 

 ( ) ( )* * 0i eA mµ
µ µγ⎡ ψ⎤− ∂ + − =⎢⎣ ⎥⎦

 (93) 

 
To find a 4 x 4 matrix Sc, which satisfies 
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 Sc ψ* = ψc (94) 
 
We insert Sc

+ Sc term in front of ψ* in Equation 93 and multiply Sc from the left: 
 

 ( ) ( ) ( )* 1 0c c n cS S i eA m Sµ
µγ −⎡ *ψ⎤− ∂ + − =⎢⎣ ⎥⎦

 (95) 

 
From Equations 94 and 95, it follows that Sc satisfies the following equation: 
 
 ( )* 1

c cS Sµ µγ γ− = −  (96) 
 
Now, the Pauli-Dirac representation of γµ gives 
 

 
( )
( )

*

*

  for 0,  1,  3

   for 2

µ µ

µ µ

γ γ µ

γ γ µ

= =

= − =
 (97) 

 
Therefore, Equation 96 implies that Sc commutes with γ2 and anticommutes with 
γ0, γ1, γ3.  This can be satisfied if Sc is proportional to γ2: 
 

  (98) 2

1
1

1
1

cS iγ

⎛ ⎞
⎜ ⎟−⎜= =
⎜ −
⎜ ⎟
⎝ ⎠

⎟
⎟

 
The factor i is chosen by convention. 
 
To obtain the positron wave function, one takes a complex conjugate of the 
electron wave function, followed by a multiplication of iγ2: 
 
 2 *

c iψ γ ψ=  (99) 
 
We can apply Equation 99 to ψ(1)(p): 
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 ( ) ( )1

1
0

,      E 0
E

E

iP x oPzp N e P
m

Px iPy
m

ψ −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ⎜ ⎟+⎜ ⎟

+⎜ ⎟
⎜ ⎟

+⎝ ⎠

i = >  (100) 

 

 

( ) ( )1 *2

1
1 0

1
1 E

1
E

E

;     E 0
E

0
1

iP x

iP x o

Pzi p N e
m

Px iPy
m

Px iPy
m

Pz
N e P

m

γ ψ

⎛ ⎞
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟− ⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟− +⎜ ⎟⎜ ⎟ −⎜ ⎟⎝ ⎠ ⎜ ⎟

+⎝ ⎠
−⎛ ⎞

⎜ ⎟+⎜ ⎟
−⎜ ⎟= = >⎜ ⎟+

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

i

i

 (101) 

 
We can also write ψ(4)(p′) as 
 

 ( ) ( ) ( )04

E-

    where   0
E-

0
1

iP x

Px iPy
m

Pz
p N e P E

m
ψ ′−

′ ′−⎛ ⎞
⎜ ⎟
⎜ ⎟

′−⎜ ⎟′ ′= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

i ′ <  (102) 

 
Substituting p′ = -p into Equation 102, we obtain 
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 ( ) ( )4 0

E

;      E 0
E

0
1

iP x

Px iPy
m

Pz
p N e P

m
ψ

− −⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟− = = >⎜ ⎟− −
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

i  (103) 

 
Equation 103 is identical to Equation 101. 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 1 * 42

2 2 * 32

Hence,        

Similarly,    
c

c

i p p

i p

ψ γ ψ ψ

ψ γ ψ ψ

= = −

p= = − −
 (104) 

 
It also follows 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

4 1

3 2

  u p v p

u p v p

− =

− − =
 (105) 

 
where v(1), v(2) are the spinors for positron wave functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



P570  25 

It is instructive to consider time-reversal operation on the Dirac equation.  In a 
procedure analogous to that for the charge-conjugation operation, we can write 
down the Dirac equation for a time-reversed electron state, ψt, as 
 

 0 1 2 3 0ti i i i m
t x y z

γ γ γ γ ψ
⎛ ⎞∂ ∂ ∂ ∂
− + + + − =⎜ ∂ ∂ ∂ ∂⎝ ⎠

⎟  (106) 

 
and the ordinary Dirac equation as 
 

 0 1 2 3 0i i i i m
t x y z

γ γ γ γ ψ
⎛ ∂ ∂ ∂ ∂

+ + + −⎜ ∂ ∂ ∂ ∂⎝ ⎠

⎞
=⎟  (107) 

 
Note that Equation 106 is obtained by t → -t transformation applied to the Dirac 
equation. 
 
 
 
Taking the complex conjugate of Equation 107 gives 
 

 ( ) ( ) ( ) ( )* * * *0 1 2 3 0i i i i m
t x y z

γ γ γ γ ψ
⎛ ⎞∂ ∂ ∂ ∂
− − − − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

* =

t

 (108) 

 
To find a 4 x 4 matrix which transforms ψ to ψt
 
 St ψ* = ψt (109) 
 
When we multiply  in front of ψ* in Equation 108 followed by multiplying S1

tS S−
t 

from the left, we get 
 

( ) ( ) ( ) ( )* * * *0 1 2 3 1 * 0t t tS i i i i S m S
t x y z

γ γ γ γ ψ−
⎧ ⎫⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂⎪ ⎪− − − − −⎨ ⎬⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

=  (110) 

 
Equations 109 and 110 imply that St should have the following properties: 
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( )
( )

*0 1 0

* 1     ( 1 3)

t t

i i
t t

S S

S S i

γ γ

γ γ

−

−

=

= − = →
 (111) 

 
Since (γ0)* = γ0, (γ1)* = γ1, (γ2)* = -γ2, (γ3)* = γ3, Equation 111 implies 
 
St commutes with γ0, γ2 and anticommutes with γ1, γ3.  St is therefore proportional 
to γ1, γ3 and, by convention, one chooses 
 

 

1 3

2

2

0 1 0 0
0 1 0 0 0

0 0 0 0 1
0 0 1 0

tS i

i

γ γ

σ
σ

=

−⎛ ⎞
⎜−⎛ ⎞ ⎜= = −⎜ ⎟ ⎜ ⎟

⎟
⎟

−⎝ ⎠
⎜ ⎟
⎝ ⎠

 (112) 

 
Applying St ψ*(p) for ψ(1), one obtains 
 

 

( ) ( )1 *

1
0 1 0 0 0
1 0 0 0
0 0 0 1 E
0 0 1 0

E
0
1

E

E

iP x
t

iP x

PzS p i N e
m

Px iPy
m

Px iPyiN e
m

Pz
m

ψ

⎛ ⎞
⎜ ⎟−⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟= − ⎜ ⎟⎜ ⎟− +⎜ ⎟⎜ ⎟ −⎜ ⎟⎝ ⎠ ⎜ ⎟+⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟− −= − ⎜ ⎟+⎜ ⎟
⎜ ⎟
⎜ ⎟+⎝ ⎠

i

i

 (113) 

 
Hence, the time-reversal operation transforms ( ) ( ) ( ) ( )1 2,   to  ,p t p tψ ψ − − , as one 
would expect (since time-reversal flips ,p t and spin, and ( ) ( )1 2and ψ ψ  have 
opposite spin). 
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The combined operation of CPT can be obtained too. 
 
Since  Pψ = γ0ψ 
 Cψ = iγ2ψ* 
 Tψ = iγ1γ3ψ* 
 

we have 

( )
( )

1 3 *

0 1 3 *

2 0 1 3

0 1 2 3

5

        

        
        
        

CPT CPT CP i

C i

i i

i

ψ ψ γ γ

γ γ γ ψ

γ γ γ γ ψ

γ γ γ γ ψ

γ ψ

= =

=

= −

=

= −

ψ

 

 
We can also examine the operation of CPT on solutions for the Klein-Gordon 
equation 
 ( ) ( )2 0m xµ

µ φ∂ ∂ + =  
 
In the presence of an EM field: 
 i i eAµ µ µ∂ → ∂ −  
and the K-G equation becomes 
 
 ( )( ) ( ) ( )2i eA i eA x mµ µ

µ µ φ φ∂ − ∂ − = x  
or 
 ( ) ( )2 2 2 2 0m ie A A e A xµ µ

µ µ φ⎡ ⎤+ + ∂ + ∂ − =⎣ ⎦  
 
It is straight forward to show that 
 

P:  ( ) ( )P x xφ φ′ ′ =  
C:  ( ) ( )*

C x xφ φ′ ′ =  
T:  ( ) ( )*

T x xφ φ′ ′ =  
CPT:  ( ) ( )CPT x xφ φ′ ′ =  

 
One can also work out the non-relativistic limit of the Dirac equation.  From 
Equation 86, the following coupled equations can be obtained: 
 



P570  28 

 
( ) ( )

( ) ( )

E

E

B A

A B

P m

P m

σ ψ ψ

σ ψ ψ

= −

= +

i

i
 (114) 

where A

B

ψ
ψ

ψ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

 
Making the substitution P → P + eA = π, Equation 114 becomes 
 

 
( ) ( )
( ) ( )

o
B A

o
A B

E eA m

E eA m

σ π ψ ψ

σ π ψ ψ

= + −

= + +

i

i
 (115) 

 
In the non-relativistic limit E  m and eAo << m. 
Therefore 

 
2B m A
σ πψ ψi  (116) 

 
Using Equation 115, Equation 116 gives 
 

 ( ) (
2

E
2

o )A NR AeA
m

σ π
ψ ψ= +

i
 (117) 

 
where ENR > E – m 
 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

22 2

2
           

i P eA i P eA P eA

P eA e A

σ π π σ π π σ

σ

= + × = + + + × +

= + + ∇×

i i i

i
 (118) 

 
Note that  ( ) ( ) ( )P A A P i Aψ ψ ψ× + × = − ∇×  
 
Equations 117 and 118 imply 

 ( )21 E
2 2

o
A NR

eP eA B eA
m m Aσ ψ⎡ + + − =⎢⎣ ⎦

ψ⎤
⎥i  (119) 

which is the Pauli equation. 
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For a uniform B  field, 1
2

A B γ= ×  

 

 ( ) ( ) ( )2 2 212
2

P eA P eP B P eB P P eB Lγ γ+ ≅ + × = + × = +2i i i  (120) 

 
Using Equation 120, Equation 119 becomes 
 

 ( )
2

2
2 2

o
A NR

P e L S B eA
m m

E Aψ ψ
⎡ ⎤

+ + − =⎢
⎣ ⎦

⎥i  (121) 

 
The Dirac equation leads to gs = 2 for spin-½ particle. 
 
However, gs = 2 is not a unique feature of Dirac equation.  To illustrate this point, 
one can start with a non-relativistic expression 
 

 ( )2
2

2
PPH m

σ
= = 2m

i
 (122) 

Making the  substitution, Equation 122 becomes P P e→ + A
 

 

( )
( )

( ) ( )

2

2

2

2

1   
2
1   2

2 2

H P eA m

P eA e B
m

eP eA S B
m m

σ

σ

⎡ ⎤= +⎣ ⎦

⎡= + +⎢⎣ ⎦

⎡ ⎤= + +⎢ ⎥⎣ ⎦

⎤
⎥

i

i

i

 (123) 

 
Hence, gs = 2 also follows from a non-relativistic approach. 
 
The spin operator is defined as 
 

  (124) (
0

    ,  ,  1,  2,  3  cyclic
0

k
ijk

k

i j k
σ

σ
σ

⎡ ⎤
= = =⎢ ⎥

⎣ ⎦
∑ )

 
It can be shown that the Dirac Hamiltonian H P mα β= +i  does not commute with 
Σ, namely 
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 ( ), 2H i Pα⎡ ⎤ 0Σ = × ≠⎣ ⎦  (125) 
 
It does not commute with the orbital angular momentum L  either 
 
 ( ),H L i Pα⎡ ⎤ 0= − × ≠⎣ ⎦  (126) 
 
However, Equations 125 and 126 show that H commutes with the total angular 

momentum 1
2

J L= + Σ  

 

 1,  ,  ,  0
2

H J H L H⎡ ⎤⎡ ⎤ ⎡ ⎤= + Σ =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (127) 

 
Although spin itself is not conserved, the spin projection along the momentum 
vector is conserved.  This spin projection is also called helicity and is defined as  
 

 
ˆ 01 1

ˆ2 2 0

P
P

P

σ

σ

⎡ ⎤
Σ = ⎢ ⎥

⎢ ⎥⎣ ⎦

i
i

i
 (128) 

 

One can readily show that 1 ˆ,  0
2

H P⎡ ⎤Σ =⎢⎣ ⎦⎥
i .  The reason why 1 ˆ

2
PΣi  is conserved 

can be understood if one recognizes that there is no orbital angular momentum 
along the direction of momentum.  Hence the particle’s spin is the same as its total 
angular momentum in this case, and it is conserved. 
 
Note that ( )5 0      1,  2,  3k k kγ γ γΣ = =  
 
The Dirac spinors given in Equation 87 are not eigenstates of the helicity operator: 
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( ) ( )1

1
0 0

00 01 1ˆ
0 02 2
0 0

Pz Px iPy
Px iPy Pz

P u P N PzPz Px iPyP E m
Px iPyPx iPy Pz

E m

⎛ ⎞−⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ −⎛ ⎞ ⎜ ⎟Σ = ⎜ ⎟⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎜ ⎟
⎜ ⎟ ⎜ ⎟++ −⎝ ⎠ ⎜ ⎟

+⎝ ⎠

i

 2
2

0

Pz
Px iPyN
PP E m

⎛ ⎞
⎜ ⎟+⎜= ⎜

+⎜ ⎟
⎜ ⎟
⎝ ⎠

⎟
⎟  (129) 

 

Equation 129 shows that in general, U(1) (P) is not an eigenstate of 1 ˆ
2

PΣi .  In the 

special case when Px = Py = 0, U(1) (P) is an eigenstate of 1 ˆ
2

PΣi  with an 

eigenvalue of +½. 
 
It is possible to construct basis states which are eigenstates of the helicity operator.  
It can easily be shown that the following u(±) are hilicity eigenstates with 
eigenvalues of +½, -½, respectively. 
 

 ( ) ( )

( )

Pz P
Px iPy

Pu N Pz P
E m

P
Px iPy

E m

±

⎛ ⎞±
⎜ ⎟+⎜ ⎟
⎜ ⎟

= ±⎜
+⎜ ⎟

⎜ ⎟
+⎜ ⎟

+⎝ ⎠

⎟  (130) 

 
We summarize here some of the pertinent properties of the Dirac spinors u and v: 
 
First, u and v satisfy the following equations: 
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P( ) 0,    m u P− = ( ) 0m v

u P

+ =

( ) 0,    m v P− = ( ) 0m+ =
 (131) 

 
The orthogonality relations are 
 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2  ,    2  

2 ,    2

r s r s
rs rs

s s s s

u u E v v E

u u m v v m

δ δ
+ +

=

= = −

=  (132) 

 
Note that different normalizations have been adopted in the literature.  For example 
 
 ( ) ( ) ( ) ( )1,    1s s s su u v v= =  (133) 
 
have been chosen by many textbooks 
 
The completeness relations are 
 

 

( ) ( ) ( ) ( )
1,2

s s

s
u P u P P

=

=∑
( ) ( ) ( ) ( )

1,2

s s

s

m

v P v P P
=

+

=∑ m−
 (134) 

 
Why are these relations called completeness relations? 
 
 
One can show easily that 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1,2
2s s s s

s
u P u P v P v P m

=

−∑ =  (135) 

 
Using the normalization scheme of Equation 133, one obtains 
 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1,2
1s s s s

s
u P u P v P v P

=

− =∑  

Equations 134 are very important for evaluating cross sections later on. 
 
Explicitly 
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( ) ( )

( ) ( )

1 2

1 2

1 0
0 1

;    

;    
0 1
1 0

u E m u E mPz Px iPy
E m E m

Px iPy Pz
E m E m

Px iPy Pz
E mE m

Px iPyPzv E m v E mE m E

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜

= + = +⎜ ⎟ ⎜ −
+⎜ ⎟ ⎜ +

⎜ ⎟ ⎜+ −⎜ ⎟ ⎜
+ +⎝ ⎠ ⎝

−⎛ ⎞ ⎛
++⎜ ⎟ ⎜

⎜ ⎟ ⎜ +−
= + = +⎜ ⎟ ⎜+ +

⎜ ⎟ ⎜
⎜ ⎟ ⎜⎜ ⎟ ⎜
⎝ ⎠ ⎝

m

⎞
⎟
⎟
⎟
⎟
⎟⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟⎟
⎠

 

 
In addition to  and µψψ ψγ ψ  discussed earlier, there are other bilinear covariants.  
One can show that the following 16 bilinear covariants are independent and 
complete: 
 

 

( )
( )
( )
( )
( )

5

5

             1     scalar

         4     vector

       6     tensor

        1      pseudoscalar

    4     axial vector

µ

µν

µ

ψψ

ψγ ψ

ψσ ψ

ψγ ψ

ψγ γ ψ

 (136) 

 
where  5 0 1 2 3 5,    i 5γ γ γ γ γ γ γ

+

≡ =  (137) 
γ5 anticommutes with all γµ

 
 { }5, µγ γ 0=  (138) 
 
γ5 commutes with proper Lorentz transformation S 
 
                                                          5S S 5γ γ=                                                 (139) 
 
but anticommutes with space inversion SP
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 5
P PS S 5γ γ= −  (140) 

 
The transformation of the 16 bilinear covariants under proper Lorentz 
transformations and space inversion, as given by Equation 136, can be readily 
proved using Equations 53, 74, 139 and 140. 
 
The γ5 matrix is often encountered in the context of chirality.  Although 

, it can be shown that at high energies E >> m 5,  0H γ⎡ ⎤ ≠⎣ ⎦
 

 5 0
0
Pu u

P
σ

γ
σ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

i
i

 

 

and 
5 51 1,

2 2
γ γ− +  projects the left and right-handed components of the Dirac spinor 

u. 
 
We have based our discussion on the Dirac equation upon the Pauli-Dirac 
representation of the γ matrices.  How would the wave function be modified if we 
use different representations for the γ matrices? 
 
Suppose we use another representation γµ′ for the Dirac equation with wave 
function ψ′: 
 
 ( ) 0     where     ,  2i m gµ µ ν µν

µγ ψ γ γ⎡ ⎤′ ′∂ − = =
⎣ ⎦

′ ′  (141) 

 
How does ψ′ differ from ψ in the ‘regular’ Dirac equation? 
 
 ( ) 0i mµ

µγ ψ∂ − =  (142) 
 
The ‘Pauli’s fundamental theorem’ shows that for any γµ′ satisfying the relations 

,  2gµ ν µνγ γ⎡ ⎤′ ′ =
⎣ ⎦

, a transformation S can be found such that 

 
 SγµS-1 = γµ′ (143) 
 
Equation 141 becomes 
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 ( )1 1  i S S m S Sµ

µγ − − 0ψ ′∂ − =  (144) 
 
multiplying S-1 from the left gives 
 
 ( ) 1  i m Sµ

µγ − 0ψ ′∂ − =

S

 (145) 
 
Equation 145 is equivalent to Equation 142 provided 
 
 1      or     Sψ ψ ψ− ′ ′= ψ=  (146) 
 
Therefore, the wave functions obtained using different representations of the γ-
matrices are related by the same transformation S used to relate γµ and γµ′. 
 
We complete our discussion on the Dirac equation by presenting an alternative 
way to derive the Dirac equation. 
 
We can start with the relativistic energy-momentum relation 
 
 E2 – P2 = m2 (147) 
 
or equivalently 
 
 ( )22E P mσ 2− =i  (148) 
 

Making the substitution E ,    i P i
t
∂

→ →
∂

− ∇  and acting on wave function φ , we 

have 

 2i i i i m
t t

σ σ φ∂ ∂⎛ ⎞⎛ ⎞+ ∇ − ∇ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
φi i  (149) 

 
Now φ  is a two-component wave function. 
Define 

 
( )

( )

1R

L

i i
m t

φ σ φ

φ φ

∂⎛ ⎞= − ∇⎜ ∂⎝

=

⎟
⎠

i
 (150) 
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then Equation 149 gives 
 

 

( ) ( )

( ) ( )

1

1

R L

L R

i i
m t

i i
m t

φ σ φ

φ σ φ

∂⎛ ⎞= − ∇⎜ ⎟∂⎝
∂⎛ ⎞= + ∇⎜ ⎟∂⎝ ⎠

⎠
i

i
 (151) 

 
We can now construct a 4-component wave function ψ 
 

 
( ) ( )

( ) ( )

R L
A

R L
B

ψ φ φ
ψ

ψ φ φ

⎛ ⎞+⎛ ⎞
= = ⎜⎜ ⎟ ⎜ −⎝ ⎠ ⎝ ⎠

⎟⎟  (152) 

 
From Equation 151, one can form the following equations: 
 

 ( ) ( ) ( ) ( )( ) ( ) ( )(1R L R L R Li i
m t

φ φ φ φ σ φ φ∂⎡ ⎤+ = + + ∇ −⎢ ⎥∂⎣ ⎦
)i  (153) 

 ( ) ( ) ( ) ( )( ) ( ) ( )(1R L R L R Li i
m t

φ φ φ φ σ φ φ∂⎡ ⎤− = − − + ∇ +⎢ ⎥∂⎣ ⎦
)i  (154) 

 
From Equation 152, Equations 153, 154 can be expressed 
 

 A A

B B

i i
t m

i i
t

σ ψ ψ
ψ ψσ

∂⎛ ⎞∇⎜ ⎟⎛ ⎞ ⎛ ⎞∂ =⎜ ⎟⎜ ⎟ ⎜∂ ⎝ ⎠ ⎝ ⎠⎜ ⎟− ∇ −⎜ ⎟
∂⎝ ⎠

⎟

i

i
 (155) 

 
which is simply 
 ( ) 0i mµ

µγ ψ∂ − =  (156) 
 
the Dirac equation. 


