Geometry of gauge theory
When you first encountered gauge theory you may have wondered why $\partial_{\mu}+i g A_{\mu}$ was called a "covariant" derivative, why A_{n} had a funny inhomogeneous transformation rule, and why we say "only the fields are physical, except in situations like the Aharowor-bohm effect." We will see today how all these facts are related to differential peoretery objects defined on a principal bundle.
Definitions: $P \xrightarrow{G} M$ is a principal G-bundle over M if it looks locally like (x, y) where $x \in M$ is a point or a differentiable (for us, horatzion) manifold M and $g \in G$ is an element of a Lie soup. M is the "base space" and G is the gauge group.

Example: $M=\mathbb{R}$,

$$
G=u(1) \simeq s^{\prime} \text {. Then } P \text { is the }
$$ cylinder.

A map $\sigma: M \rightarrow P$ which can be projected back down to M is a section. a group eleven at each point. This is the local gauge transformation you have seen before. So for, the group con only act on itgect by moving points along a fiber (copy of G over a point x), later me will see how G acts on other geometric objects on M.

To make the geometric analogies clearer. let's review some facts about covariant derivatives and comections on Lorentzian manifolds The covariant derivative lets us compare vectors defined at different points of M. In other words, it induces a nap $T_{x} M \rightarrow T_{y} M$ (parallel transport), so we can talk about a connection on the tangent bundle.

In local coordinates, the connection is described by Christoffel symbols $\Gamma_{n \sigma}^{\prime}$, and the covariant derivative of a vector- field V is $\nabla_{\mu} V^{v}=\partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{v} V^{\lambda}$. You may recall that under a geneal coordinate transformation, T does not transform like a tesor:

$$
\Gamma \rightarrow\left(\frac{\partial x}{\partial x^{\prime}}\right)^{2}\left(\frac{\partial x^{\prime}}{\partial x}\right) \Gamma-\underbrace{\left(\frac{\partial x}{\partial x^{\prime}}\right)^{2}\left(\frac{\partial^{2} x^{\prime}}{\partial x^{2}}\right)}_{\substack{\text { extra non-tensorial } \\ \text { piece }}}
$$

In terms of Γ, the Riemann tensor is

$$
R^{\prime \prime}=\prime \partial_{C} \Gamma_{3}+[\Gamma, \Gamma]
$$

and we also have $[\nabla, \nabla]=R$ for a torion-free connection. We have written this in such a way as to remind you of various formulas from gauge theory.
$A_{n} \rightarrow A_{\sim}+\partial_{\mu} \alpha$ (inhomopeeans under gave transtomitios)

$$
F_{u v}=\left[D_{\mu}, D_{v}\right]=\partial_{[r} A_{v]}-i g\left[A_{\imath}, A_{v}\right]
$$

Indeed, these are the same geometric objects.' A is a connection, F is a curvature, etc., but they are defined on P instead of M.

Make this none precise by introducing the connection 1-form. 3
First, define a vielbein $\hat{e}_{a}=e_{a}^{\mu} \partial_{\mu}$, and a dual basis of 1-forms $\hat{\theta}^{a}=e_{\mu}^{a} d x^{m}$, such that the metric is diagonal:

$$
q=\eta_{n 0} d x^{2} \otimes d x^{v}=\eta_{a b} \hat{\theta}^{a} \otimes \hat{\theta}^{b} .
$$

Using the vielbein, we can define connection coefficients $\Gamma_{b c}^{a}$ by $V_{a} \hat{e}_{b}=\Gamma_{a b}^{c} \hat{e}_{c}$ as usual, and from these, a connetion 1-form (also called the "spin connection").

Two important properties of w^{a} will be important for us:

- for a metric connection, $\nabla_{g}=0$, we have

$$
\begin{aligned}
0=\nabla_{\mu} \eta_{a b} & =\partial_{\mu} \eta_{a b}-w_{\mu}^{c}{ }_{a}^{c} \eta_{c b}-w_{\mu}^{c}{ }_{c}^{c} \eta_{a c} \\
& =-w_{m a b}-w_{\mu b a}
\end{aligned}
$$

In other mods, w is asymmetric in the vielbein indices. We con interpret w_{μ}^{a} b as $\left(w_{\mu}\right)_{b}^{a}$, a matrix-valued 1-form, where the matrix w_{b}^{a} is in the Lie algebra of local lorentz, so (3,1).

- Under a change of frame which preserves the metric, vielbein chases b) a Lorentz transformation, $e_{m}^{a} \rightarrow \Lambda_{b}^{a} e_{m}^{b}$, ail similarly lower vielbcin indices have $e_{a}^{m} \rightarrow\left(n^{-1}\right)_{a}^{b} e_{b}^{m}$. We can do this at each point: $\cap_{b}^{9}(x)$. The convection coefficients will transform as

$$
\nabla_{a^{\prime}} \hat{e}_{b}^{\prime} \equiv \Gamma_{a b}^{c} \hat{e}_{c}^{\prime}=\underbrace{\nabla_{a^{\prime}}\left(\left(\Lambda^{-1}\right)_{b}^{c} \hat{e}_{c}\right)}_{\text {inhomogreacs! }}+\left(\Lambda^{-1}\right)_{\alpha}^{c} \nabla_{b} \nabla_{a} \hat{e}_{c}
$$

Keeping careful track of the indices, we find the tanstrmation 4

$$
w^{\prime}=\Lambda^{-1} w \Lambda+\Lambda^{-1} d \Lambda
$$

Not coinciletally, this looks a lot like a gauge transformation! And converting buck to coordinate basis, it gives the familiar non-tensorial transformation of the christoffels.

Geometrically, what is happening is that there is a principal bundle over M, the frame bundle $P \equiv L M \xrightarrow{G} M$, where $G=\operatorname{SO}(3,1)$, which comes with eves lorentzian manifold M. The local Lorentz trourtormations $\Lambda(x)$ are a section $\sigma: M \rightarrow P$. We can even so one step further and define a connection on the (target space of the) total space which is independent of σ.
In local coordinates where a point on $P_{\text {is }} p=(x, g)$ with $g=\sigma(x)$,

$$
\hat{w}=g^{-1} \omega g+g^{-1} d g
$$

A different section $\sigma^{\prime}(x)$ is related to σ by $\sigma^{\prime}(x)=\mathrm{hg}$. To get back to P, need to left-multiply by h^{-1}. The new connection is

$$
\begin{aligned}
\hat{w}^{\prime} & =\left(h^{-1} g\right)^{-1} w^{\prime}\left(h^{-1} g\right)+\left(h^{-1} g\right)^{-1} d\left(h^{-1} g\right) \\
& =g^{-1} h\left(h^{-1} w h+h^{-1} d h\right)\left(h^{-1} g\right)+\left(g^{-1} h\right)\left(-h^{-1} d h h^{-1} g+h^{-1} d g\right) \\
& =g^{-1} w g+g^{-1} d h \hbar^{-1} g-g^{-1} d h h^{-1}+g^{-1} d g
\end{aligned}
$$

$=\hat{\omega}$, so independet of σ as desired.
In other words, \hat{w} (which lives on P) is a geometric object independent of the choice of section (gauge), and pulling it down to the bare yields a 1-form on M which does transform under a choice of gauge.

Now, it is a straightforward conceptual jump to take G to be an arbitrary Lie group instead of local Lorentz.
In this case, there is no frame bundle, but we can still define a g-valued 1-form \hat{w} on P, choose a section, and get a g-valued connection 1-tion w on the ouse. Reversing the logic, asking for invariance of \hat{w} implies the gauge trastomontin cull for w, which we can now call iA. For $G=u(1)$, writing $g=e^{i \alpha}$ gives

$$
\begin{aligned}
& i A \rightarrow g^{-1} i A g+g^{-1} d y=e^{-i \alpha} i A e^{i \alpha}+e^{-i \alpha}\left(i d \alpha e^{i \alpha}\right) \\
&=i A+i d \alpha, \text { so } \\
& A \rightarrow A+d \alpha, \text { familiar tom } E+M .
\end{aligned}
$$

Just like the covariant denvative on $T M$ is $D=\partial+\omega$, the covariant derivative on TP is $D=\partial+\hat{\omega}$, which when pulled back to M bs a gauge choice σ is $D=\partial+A$.
Also get a nice interpetztion of curvature: on M, can show $R=d w+w \wedge w$ is the curvature 2-form which is matrix-valued and whore components are the Riemon tensor. On P, the anabopus object $\Omega=d \hat{\omega}+\frac{1}{2}[\hat{\omega} 1 \hat{\omega}]$ can be interpreted as the curvature of P with respect to the connection \hat{w}.
Pulled back to M, this becomes the farriliar field strength tasor (antisomettic, so really a 2 -form) $F=d A+A 1 A$, Which transforms as $F \rightarrow g^{-1} F g$.

