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We establish the existence of the top quark using a 67 pb ' data sample of pp collisions at

~s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). Employing techniques similar
to those we previously published, we observe a signal consistent with tt decay to WWbb, but
inconsistent with the background prediction by 4.8o.. Additional evidence for the top quark is

provided by a peak in the reconstructed mass distribution. We measure the top quark mass to be
176 ~ 8(stat) ~ 10(syst) GeV/c2, and the tt production cross section to be 6.8+24 pb.

PACS numbers: 14.65.Ha, 13.85.Qk, 13.85.Ni

Recently the Collider Detector at Fermilab (CDF) Col-
laboration presented the first direct evidence for the
top quark [I], the weak isodoublet partner of the b

quark required in the standard model. We searched
for tt pair production with the subsequent decay tt ~
WbWb. The observed topology in such events is deter-
mined by the decay mode of the two W bosons. Dilep-
ton events (eIL, ee, and ~p, ) are produced primarily
when both W bosons decay into ev or p, v. Events in
the lepton + jets channel (e, p, + jets) occur when one

W boson decays into leptons and the other decays into
quarks. To suppress background in the lepton + jets
mode, we identify b quarks by reconstructing secondary
vertices from b decay (SVX tag) and by finding addi-
tional leptons from b semileptonic decay (SLT tag). In
Ref. [I] we found a 2.8o. excess of signal over the expec-
tation from background. The interpretation of the excess
as top quark production was supported by a peak in the
mass distribution for fully reconstructed events. Addi-
tional evidence was found in the jet energy distributions
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TABLE I. Number of lepton + jet events in the 67 pb ' data
sample along with the numbers of SVX tags observed and the
estimated background. Based on the excess number of tags in
events with ~3 jets, we expect an additional 0.5 and 5 tags
from tt decay in the 1- and 2-jet bins, respectively.

N;et

1

2
3

Observed
events

6578
1026

164
39

Observed
SVX tags

40
34
17
10

Background
tags expected

50~ 12
21.2 ~ 6.5
5.2 ~ 1.7
1.5 ~ 0.4
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in lepton + jets events [2]. An upper limit on the tt pro-
duction cross section has been published by the DO Col-
laboration [3].

We report here on a data sample containing 19 pb
used in Ref. [1] and 48 pb ' from the current Fermilab
Collider run, which began early in 1994 and is expected
to continue until the end of 1995.

The CDF consists of a magnetic spectrometer sur-
rounded by calorimeters and muon chambers [4]. A new
low-noise, radiation-hard, four-layer silicon vertex detec-
tor, located immediately outside the beampipe, provides
precise track reconstruction in the plane transverse to the
beam and is used to identify secondary vertices from b
and c quark decays [5]. The momenta of charged par-
ticles are measured in the central tracking chamber (CTC),
which is in a 1.4 T superconducting solenoidal magnet.
Outside the CTC, electromagnetic and hadronic calorime-
ters cover the pseudorapidity region ~g~ ( 4.2 [6] and
are used to identify jets and electron candidates. The
calorimeters are also used to measure the missing trans-
verse energy g'T, which can indicate the presence of unde-
tected energetic neutrinos. Outside the calorimeters, drift
chambers in the region ~q ~

( 1.0 provide muon identifi-
cation. A three-level trigger selects the inclusive electron
and muon events used in this analysis. To improve the tt
detection efficiency, triggers based on g& are added to the
lepton triggers used in Ref. [1].

The data samples for both the dilepton and lep-
ton + jets analyses are subsets of a sample of high-PT in-
clusive lepton events that contain an isolated electron with
ET ) 20 GeV or an isolated muon with Pz ~ 20 GeV/c
in the central region (~g~ ( 1.0). Events which con-
tain a second lepton candidate are removed as possible
Z bosons if an ee or p, p, invariant mass is between 75 and
105 GeV/c~. For the lepton + jets analysis, an inclusive
W boson sample is made by requiring gz ) 20 GeV. Ta-
ble I classifies the W events by the number of jets with
observed Ez)15 GeV an-d ~g~ ( 2.0. The dilepton sam-
ple consists of inclusive lepton events that also have a sec-
ond lepton with Pz ) 20 GeV/c, satisfying looser lepton
identification requirements. The two leptons must have
opposite electric charge.

The primary method for finding top quarks in the
lepton + jets channel is to search for secondary vertices

from b quark decay (SVX tagging). The vertex-finding
efficiency is significantly larger now than previously
due to an improved vertex-finding algorithm and the
performance of the new vertex detector. The previous
vertex-finding algorithm searched for a secondary vertex
with two or more tracks. The new algorithm first searches
for vertices with three or more tracks with looser track
requirements, and if that fails, searches for two-track
vertices using more stringent track and vertex quality
criteria. The efficiency for tagging a b quark is measured
in inclusive electron and muon samples which are en-
riched in b decays. The ratio of the measured efficiency
to the prediction of a detailed Monte Carlo simulation is
0.96 +. 0.07, with good agreement (~2%) between the
electron and muon samples. The efficiency for tagging at
least one b quark in a tt event with ~3 jets is determined
from Monte Carlo simulation to be (42 ~ 5)% in the
current run, compared to the (22 ~ 6)% reported in the
previous publication [7]. In this Letter we apply the new
vertex-finding algorithm to the data from the previous and
the current runs.

In Ref. [1], we presented two methods for estimating
the background to the top quark signal. In method 1, the
observed tag rate in inclusive jet samples is used to cal-
culate the background from mistags and QCD-produced
heavy quark pairs (bb and cc) recoiling against a W bo-
son. This is an overestimate of the background because
there are sources of heavy quarks in an inclusive jet sam-
ple that are not present in W + jet events. In method 2,
the mistag rate is again measured with inclusive jets,
while the fraction of W + jet events that are Wbb and
Wcc is estimated from a Monte Carlo sample, using mea-
sured tagging efficiencies. In the present analysis, we use
method 2 as the best estimate of the SVX-tag background.
The improved performance of the new vertex detector, our
ability to simulate its behavior accurately, and the agree-
ment between the prediction and data in the W + 1-jet
and W + 2-jet samples make this the natural choice. The
calculated background, including the small contributions
from non-W background, Wc production, and vector bo-
son pair production, is given in Table I ~

The numbers of SVX tags in the 1-jet and 2-jet
samples are consistent with the expected background plus
a small tt contribution (Table I and Fig. 1). However,
for the W+ ~3-jet signal region, 27 tags are observed
compared to a predicted background of 6.7 ~ 2. 1 tags
[8]. The probability of the background fiuctuating to
~27 is calculated to be 2 X 10 ~ (see Table II) using
the procedure outlined in Ref. [1] (see [9]). The 27
tagged jets are in 21 events; the six events with two
tagged jets can be compared with four expected for
the top + background hypothesis and ~1 for background
alone. Figure 1 also shows the decay lifetime distribution
for the SVX tags in W+ ~3-jet events. It is consistent
with the distribution predicted for b decay from the tt
Monte Carlo simulation. From the number of SVX-
tagged events, the estimated background, the calculated
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FIG. 1. Number of events before SVX tagging (circles),
number of tags observed (triangles), and expected number of
background tags (hatched) versus jet multiplicity. Based on
the excess number of tags in events with ~3 jets, we expect
an additional 0.5 and 5 tags from tt decay in the 1- and 2-jet
bins, respectively. The inset shows the secondary vertex proper
time distribution for the 27 tagged jets in the W+ ~3-jet data
(triangles) compared to the expectation for b quark jets from
tt decay.

TABLE EI. The number of tags or events observed in the
three channels along with the expected background and the
probability that the background would fluctuate to the observed
number or more.

Channel

Observed
Expected background
Background probability

SVX

27 tags
6.7 ~ 2. 1

2 x 10-'

23 tags
15.4 ~ 2.0
6 x 10-'

Dilepton

6 events
1.3 ~ 0.3
3 x 10-'

tt acceptance, and the integrated luminosity of the data
sample, we calculate the st production cross section to be
6.8+q4 pb, where the uncertainty includes both statistical
and systematic effects. This differs from the cross section
given in Ref. [1]by 6.9 ~ 5.9 pb.

The second technique for tagging b quarks (SLT
tagging) is to search for an additional lepton from
semileptonic b decay. Electrons and muons are found by
matching CTC tracks with electromagnetic energy clusters
or tracks in the muon chambers. To maintain acceptance
for leptons coming directly from b decay and from the
daughter c quark, the Pr threshold is kept low (2 GeV/c).
The only significant change to the selection algorithm
compared to Ref. [1] is that the fiducial region for SLT
muons has been increased from (i1~ ( 0.6 to (g( ( 1.0,
resulting in an increase of the SLT total acceptance and
background by a factor of 1.2.

The major backgrounds in the SLT analysis are hadrons
that are misidentified as leptons, and electrons from
unidentified photon conversions. These rates and the
smaller Wbb and Wcc backgrounds are determined di-

rectly from inclusive jet data. The remaining backgrounds
are much smaller and are calculated using the techniques
discussed in Ref. [1]. The efficiency of the algorithm is
measured with photon conversion and J/P ~ p, p, data.
The probability of finding an additional e or p, in a tt
event with ~3 jets is (20 ~ 2)%. Table II shows the
background and number of observed tags for the signal
region (W+ ~3 jets). There are 23 tags in 22 events, with
15.4 ~ 2.0 tags expected from background. Six events
contain both an SVX and SLT tag, compared to the
expected four for top + background and one for back-
ground alone.

The dilepton analysis is very similar to that previously
reported [1], with slight modifications to the lepton
identification requirements to make them the same as
those used in the single lepton analysis. The dilepton
data sample, described above, is reduced by additional
requirements on ]%rr and the number of jets. In order to
suppress background from Drell- Yan lepton pairs, which
have little or no true g'T, the gr is corrected to account
for jet energy mismeasurement [1]. The magnitude of the
corrected $T is required to be at least 25 GeV and, if g'T

is less than 50 GeV, the azimuthal angle between the gT
vector and the nearest lepton or jet must be greater than
20 . Finally, all events are required to have at least two
jets with observed Er ) 10 GeV and )g~ ( 2.0.

The major backgrounds are Drell-Yan lepton pairs,
Z rr, hadrons misidentified as leptons, WW, and bb
production. We calculate the first three from data and the
last two with Monte Carlo simulation [1]. As is shown
in Table II, the total background expected is 1.3 ~ 0.3
events. We observe a total of seven events, 5 ep, and
2 p, p, . The relative numbers are consistent with our
dilepton acceptance, 60% of which is in the ep, channel.
Although we estimated the expected background from
radiative Z decay to be small (0.04 event), one of the
p, p, events contains an energetic photon with a p, p, y
invariant mass of 86 GeV/c~. To be conservative, we
removed that event from the final sample, which thus
contains six events. Three of these events contain a total
of five b tags, compared with an expected 0.5 if the
events are background. We would expect 3.6 tags if the
events are from tt decay. When the requirement that
the leptons have opposite charge is relaxed, we find one
same-sign dilepton event (ep, ) that passes all the other
event selection criteria. The expected number of same-
sign events is 0.5, of which 0.3 is due to background and
0.2 to tt decay.

In summary, we find 37 b-tagged W+ «3-jet events
[10] that contain 27 SVX tags compared to 6.7 ~ 2. 1 ex-
pected from background and 23 SLT tags with an esti-
mated background of 15.4 ~ 2.0. There are six dilepton
events compared to 1.3 ~ 0.3 events expected from back-
ground. We have taken the product (P) of the three proba-
bilities in Table II and calculated the likelihood that a
fluctuation of the background alone would yield a value
of P no larger than that which we observe. The result
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is 1 X 10, which is equivalent to a 4.8o. deviation in a
Gaussian distribution [11]. Based on the excess number
of SVX-tagged events, we expect an excess of 7.8 SLT
tags and 3.5 dilepton events from tt production, in good
agreement with the observed numbers.

We performed a number of checks of this analysis.
A good control sample for b tagging is Z + jet events,
where no top contribution is expected. We observe 15,
3, and 2 tags (SVX and SLT) in the Z + l-jet, 2-
jet, and ~3-jet samples, respectively, compared with the
background predictions of 17.5, 4.2, and 1.5. The excess
over background that was seen in Ref. [1] is no longer
present. In addition, there is no discrepancy between
the measured and predicted W + 4-jet background, in
contrast to a small deficit described in Ref. [1] (see [12]).

Single-lepton events with four or more jets can be
kinematically reconstructed to the tt WbWb hypothe-
sis, yielding for each event an estimate of the top quark
mass [1]. The lepton, neutrino (gr), and the four highest-
F& jets are assumed to be the tt daughters [13]. There
are multiple solutions, due to both the quadratic ambi-
guity in determining the longitudinal momentum of the
neutrino and the assignment of jets to the parent W's and
b's. For each event, the solution with the lowest fit ~2 is
chosen. Starting with the 203 events with )3 jets, we re-
quire each event to have a fourth jet with ET ) 8 GeV
and ~zl~ ( 2.4. This yields a sample of 99 events, of
which 88 pass a loose g2 requirement on the fit. The
mass distribution for these events is shown in Fig. 2. The
distribution is consistent with the predicted mix of ap-
proximately 30% tt signal and 70% W + jets background.
The Monte Carlo background shape agrees well with that
meaured in a limited-statistics sample of Z + 4-jet events
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FIG. 2. Reconstructed mass distribution for the W+ ~4-jet
sample prior to b tagging (solid). Also shown is the back-
ground distribution (shaded) with the normalization constrained
to the calculated value.

as well as in a QCD sample selected to approximate non-
W background. After requiring an SVX or SLT b tag,
19 of the events remain, of which 6.9+19 are expected
to be background. For these events, only solutions in
which the tagged jet is assigned to one of the b quarks
are considered. Figure 3 shows the mass distribution for
the tagged events. The mass distribution in the current
run is very similar to that from the previous run. Further-
more, we employed several mass fitting techniques which
give nearly identical results.

To find the most likely top mass, we fit the mass
distribution to a sum of the expected distributions from
the W + jets background and a top quark of mass Mt p

[1]. The —ln(liklihood) distribution from the fit is shown
in the Fig. 3 inset. The best fit mass is 176 GeV/c2
with a ~8 GeV/c2 statistical uncertainty. We make a
conservative extrapolation of the systematic uncertainty
from our previous publication, giving M„~ = 176 ~ 8 ~
10 GeV/c2. Further studies of systematic uncertainties
are in progress.

The shape of the mass peak in Fig. 3 provides addi-
tional evidence for top quark production, since the number
of observed b tags is independent of the observed mass
distribution. After including systematic effects in the pre-
dicted background shape, we find a 2 X 10 probability
that the observed mass distribution is consistent with the
background (Kolmogorov-Smirnov test). This is a con-
servative measure because it does not explicitly take into
account the observed narrow mass peak.

In conclusion, additional data confirm the top quark
evidence presented in Ref. [1]. There is now a large
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FIG. 3. Reconstructed mass distribution for the b-tagged
W+ )4-jet events (solid). Also shown are the background
shape (dotted) and the sum of background plus tt Monte
Carlo simulations for M„p = 175 GeV/c (dashed), with the
background constrained to the calculated value, 6.9+19 events.
The inset shows the likelihood fit used to determine the top
mass.
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excess in the signal that is inconsistent with the back-
ground prediction by 4.8o-, and a mass distribution with
a 2 X 10 2 probability of being consistent with the back-
ground shape. When combined, the signal size and mass
distribution have a 3.7 x 10 probability of satisfying
the background hypothesis (5.0tr). In addition, a substan-
tial fraction of the jets in the dilepton events are b tagged.
This establishes the existence of the top quark. The
preliminary mass and cross section measurements yield
M„~ = 176 ~ 8 4- 10 GeV/c2 and o.,—, = 6.8 24 pb.
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[7] A factor of 1.65 increase comes from the improvements
noted. The remaining factor of 1.15 results from correcting
an error in the b baryon lifetime used in the simulation of
tt decay in Ref. [1].
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with a predicted background of 8.8 ~ 0.6 tags.
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tion cross section obtained in this analysis as well as cor-
recting an overestimate in Ref. [1] in the Monte Carlo
background prediction.

[13] The jet energies used in the mass fitting have
been corrected for instrumental and fragmentation
effects.
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