QED with quarks
We will now augmat the QED Lagrangian with the remaining fermions,

$$
\alpha \supset \sum_{f=1}^{3} Q_{+}^{+} \bar{\sigma}^{m} D_{m} Q_{f}+u_{R}^{++} \sigma^{m} D_{\mu} u_{k}^{+}+d_{R}^{+4} \sigma^{\mu} D_{\mu} d_{k}^{+}-y_{i j}^{\alpha} Q_{i}^{+}+d_{R j}-y_{i j}^{n} Q_{i}^{+} \hat{H}_{k j}
$$

Just like in QED, where $H \rightarrow\binom{0}{v}$ and leptons got mass add electric charge, same thing happens for quarks:

$$
\begin{aligned}
& y_{i j}^{A} l_{i}^{+} H d_{R_{j}} \rightarrow m_{d_{f}} d_{L}^{+}{ }_{d}^{+} d^{+} \\
& y_{i j}^{u} d_{i}^{+} \tilde{H} u_{R_{j}} \rightarrow m_{u_{f}} u_{L}^{+} u_{k}^{+}
\end{aligned}
$$

Recall huperhages: $y=\frac{1}{6}$ for $a, y=\frac{2}{3}$ for $u_{R}, y=-\frac{1}{3} f_{0}-d_{k}$

$$
\text { Electric chare in } T_{3}+y=\left\{\begin{array}{l}
\frac{1}{2}+\frac{1}{6}=\frac{2}{3}, u_{L} \\
-\frac{1}{2}+\frac{1}{6}=-\frac{1}{3}, d_{L} \\
0+\frac{2}{3}=\frac{2}{3}, u_{R} \\
0+\left(-\frac{1}{3}\right)=-\frac{1}{3}, d_{R}
\end{array}\right.
$$

\Rightarrow in the Standard Model, up-tipe quarks are chare $\frac{2}{3}$ fermions, down-tipe quarks are charge $-\frac{1}{3}$, we will describe experiments which test both spin and charge.
Note: quarks also interact with su(3), gauge Field, un will add this back in shortly.

$$
\Rightarrow \alpha_{q \text { quarks }}=\sum_{f=1}^{3}\left(\bar{u}_{f}\left(i \delta+\frac{2}{3} e A\right) u_{f}+\bar{d}_{f}\left(i \gamma-\frac{1}{3} e \not A\right) d f-m_{u_{f}} \bar{u}_{f} u_{f}-m_{a f} \bar{d}_{f} d_{f}\right)
$$

Only new Feynman rule is fetor of $\frac{2}{3}$ or $\frac{-1}{3}$ on quark-quark-photin vertex.

Let's use QED to test the predicted properties of quarks.

A first glimpse of quarks: $e^{+} e^{-} \rightarrow$ hadrons.
Nomenclature reminder: "hadrons" = any strosly-interacting particles. Pions, kaons, protons, neutrons,.. These ore what are actually observed in experiments. Free quarks are not observed! (More on this in PHYs $5>0$ and next lecture)
We will compute $R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}$as a function of $\sqrt{s}=E_{C m}$, approximating the numerator b os $\sigma\left(\rho t_{j} \rightarrow 9 \bar{q}\right)$.
Not obvious this should work; init cross section stionsly affected by stang interactions among quarks? Will justify this shortly.

> vs.

In limit where all particles are massless, these diagrams are identical up to $e \longrightarrow Q i e . \quad \frac{d \sigma}{d \cos \theta} \sim 1+\cos ^{2} \theta$, just like $\mu^{+} \mu^{-}$!

Experimental confirmation that quarter are spin-1/2.

$$
\begin{aligned}
& \Rightarrow \sigma\left(e^{+} e^{-} \rightarrow \text { all quarks }\right)= 3 \times \sum_{\eta} \sum_{n_{i}<\sqrt{5 / 2}} Q_{i}^{2} \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right) \\
& \text {quark, are a } \\
& \text { 3-compunat recto } \\
&\text { under such })
\end{aligned} \begin{gathered}
\text { need enough ereas, to rake } \\
2 \text { quarks }
\end{gathered}
$$

$m_{u} \approx 2 \mathrm{MeV}, m_{d} \approx 5 \mathrm{meV}, m_{s} \approx 100 \mathrm{meV}$, but $m_{c} \approx 1.5 \mathrm{GeV}$, so For $\sqrt{s} \approx$ GeV, not enough energy to produce $c \bar{c}$

$$
\begin{gathered}
\Rightarrow R(\sqrt{s}=16 e v)=3\left(\left(\frac{2}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}+\left(-\frac{1}{3}\right)^{2}\right)=2 \\
q=u \quad q=d \quad q=s
\end{gathered}
$$

well -matched by experimat! Experimental confirmation that quatre have 3 colors, and that quarks have fractional charges.
$Q C D$ at colliders
Add back in two more terms from the SM Lagrangian

$$
\begin{aligned}
\alpha \supset & -\frac{1}{4} G_{m i}^{a} G^{m v a}+\sum_{i, j=1}^{N} \sum_{f} \Psi_{i}^{+}\left(\delta_{i j} i \gamma+g_{j} A^{a} T_{i j}^{a}-m_{f} \delta_{i j}\right) \psi_{j}^{+} \\
& -\frac{1}{4}\left(\partial_{\mu} A_{v}^{a}-\partial_{v} A_{n}^{a}+g_{j} f^{a a c} A_{m}^{b} A_{v}^{c}\right)^{2}: A_{m}^{a} \text { is ne glued field }
\end{aligned}
$$

The crucial difference between $Q E D$ and $Q C D$ is the gluon self-interaction.
This leads to interesting phenomena:

- Asymptotic freedom. At high energies, the strong force coupling gs gets weaker. This means we con borrow many of ow results from $\overline{Q E D}$ and tack on some group Nears factors to get the right answer.
- At lower evessics, gluons make more gluons, and the interaction stress is lars.

Single quark

jet
Instead of free quarks, what we see at colliders is a spray of nearly-collimated hadrons, called a jet. The evolution from quark to jet is calculable as long as as <1; more un this in PHys $5>0$.

- At an energy of about $200 \mathrm{meV}, \alpha_{s} \equiv \frac{9_{s}^{2}}{4 \pi}=1$, so perturbation theory based on Feynman diagrams breaks down. Two options for calculating in a nomperturbutive field theory:
- discretize spacetime on a finite lattice and use a computer (lattice gauge theory) \leftarrow Prot. El-khadra does this
- use symmetry arguments to find a change of variables to describe some subset of the particles at low enemy (chiral perturbation theory) \&we will briefly do this next week
we will focus on the high-eresy part of this sequence in this course, leaving the lower-energs phenomena for PHYS $5>0$.

Group theory review
First we review some group theory facts about SU(N) where $N=3$.

- Su(3) is 8 -dimensional: $u^{+} u=\mathbb{1}$ enforces 9 algebraic constraints on 9 complex (18 real) numbers, requiring dot $u=1$ aforcos one more. By writing $u=\mathbb{1}+i x$, we find $\left(\mathbb{1}-i x^{+}\right)(\mathbb{1}+i x)=\mathbb{1} \Rightarrow x^{+}=x+\theta\left(x^{2}\right)$ Similarly, deft $u=\mathbb{1} \Rightarrow \operatorname{Tr}(x)=0$ (we showed this in week 3). So Lie algebra su(3) is traceless Hermitian 3×3 matrices. Conventional to choose the generators $T^{a}=\frac{1}{2} \lambda^{a}, a=1, \ldots 8$, where λ^{a} are the Gell-Mann matrices (see Schwartz (25.17))
- The structure constants of $s u(3)$ are defined by $\left[T^{a}, T \cdot\right]=i f^{a b c} T^{c}$.
- Just like for Su(2) and SO (3,1), there are multiple representations of the group. There is a very neat mathematical generalization of the raisin,llowering operator trick to fond these representations, but we will focus on the tho that exist for any SUCN): fundamental (dim. $N=3$) and adjoint (dim. $N^{2}-1=8$)
- The fundamental rep is straightforuad. $\left(T_{F}^{a}\right)_{i j}=\frac{1}{2} \lambda^{a}{ }_{i j}$. The generators ore 3×3 matrices, and they satisfy
$\operatorname{Tr}\left(T_{f}^{a} T_{F}^{b}\right) \equiv T_{i j}^{a} T_{j i}^{b}=\frac{1}{2} \delta^{a b}$. For Lie algebras, takin, to trace acts like an inner product (for math nerds, this is known as the Killing form). The coefficient is $T_{F} \equiv \frac{1}{2}$. We con also sum over gereators:
$\sum_{a}\left(T_{F}^{a} T_{F}^{a}\right)_{i j}=C_{F} \delta_{i j}$, where $C_{F}=\frac{N^{2}-1}{2 N}=\frac{4}{3}$ is the quadratic casimir in the fundamental representation. Exact y analogous to $J^{2}=\sum J^{i} J^{i}=s(s+1) 1$ for spin Su(2). Quarks are vectors in the fundamental representation, and transform as $\psi_{i} \rightarrow \psi_{i}+i \alpha^{a}\left(T_{F}^{a}\right)_{i j} \psi_{j}$. Antiquarks $\left(\psi^{+}\right.$or $\left.\bar{\psi}\right)$ transform as $\bar{\psi}_{i} \rightarrow \bar{\psi}_{i}-i \alpha^{a} \bar{\psi}_{j}\left(T_{F}^{a}\right)_{j i} \quad\left(\right.$ Note: Q, u_{R}, d_{R} are all in the same representation, Which is why we con use 4-componet spinous which combine u_{L} and u_{R})
- The adjoint rep. is a representation of the Lie algebra on itself. (This sounds weird and mysterious the first time you hear it, but it's the simplest way of stating it.)
What is a representation? $V \xrightarrow{T} V^{\prime}$, meaning a vector V get napped to a vector V^{\prime} under a lie algebra ecervent T. But this is precisely what the commutation relations do!
$T^{a} \xrightarrow{T^{b}}$ if ${ }^{a b c} T^{c}$, where the map is $\left[T^{a}, T^{b}\right]$.
Because T^{c} is a linear Combination of the other generators, we must be able to write this map as an 8×8 matrix ($\left.T_{\text {adj }}\right)_{\text {le }}$, whose entries are $\left(T_{a j 1}^{a}\right)_{b c}=$ if $f^{\text {bach }}$.
The inner product for The adjoint is $\operatorname{Tr}\left(T_{a s_{j} .} T_{a d j}^{b}\right)=\sum f^{a c d} f^{b c d}=N \delta^{a b}$ The quadratic Casimir is $\sum_{a}\left(T_{a j_{j}}^{a} T_{a j)}^{a}\right)_{c}=-\sum f^{b a d} f^{d a c}=\sum f^{b a d} f^{c a d}=N \delta^{b c}$, so $T_{A}=C_{A}=3$.
Gluons are vectors in the adjoint representation:

$$
\begin{aligned}
& A_{\mu}^{b} \rightarrow A_{\mu}^{b}+i \alpha^{a}\left(T_{a d j}^{a}\right)_{b c} A_{\mu}^{c}+\frac{1}{g_{s}} \partial_{\mu} \alpha^{b} \\
& \Leftrightarrow A_{\mu}^{a} \rightarrow A_{\mu}^{a}-f^{a b c} \alpha^{b} A_{\mu}^{c}+\frac{1}{g_{s}} \partial_{\mu} \alpha^{a}
\end{aligned}
$$

with this group theron technology, we can now write down the Feynman rues for $Q C D$:
$\underset{p, i \sin \mu i, a}{\sin }=\frac{-i \eta^{\mu V}}{p^{2}} \delta^{a b} \underset{\text { (gluon is just like photon with a } \delta^{a b} \text { forcober }}{\text { in adjoint rep.) }}$ $\overrightarrow{\vec{p}} i=\frac{i(p+n)}{p^{2}-m^{2}} \delta^{i j} \begin{gathered}\text { (quarks are just like electing with } \delta^{i j} \text { for color } \\ \text { in Fundamental rep.) }\end{gathered}$ λ_{i}^{j} mora $^{j}=i g_{s} \gamma^{n} T_{i j}^{a}$ (order matters because $T_{i j}^{a}$ is a matrix!)

So far, so sod... now comes the mess.

Even computing $99 \rightarrow 99$ requires 1000 terms! We will not do this in this class, but there is a beautiful matherretical formalism which simplifies things enormously (see Schuatz (h. 27 it yourecomions).

Asymptotic freedom
In QED, 1-loop diagrams like lead to vacuum polarization. Just like a dielectric éscreas electric charge at long distances, virtual e^{+} / e^{-}pairs screen the coupling e, such that $\mu \frac{d}{d \mu} e=\frac{e^{3}}{12 \pi^{2}}$, where μ is an energy scale. The RHS is known as the beta function of QED, and because it is positive, e increases with increasing μ. $C(\mu)$ is not a constant but runs with energy. In QCD, the opposite happens. Diagrams like lead to anti-screening, such that

$$
\mu \frac{d}{d \mu} g_{s}=\frac{-g_{s}^{3}}{16 \pi^{2}}\left[\frac{11}{3} C_{A}-\frac{4}{3} n_{F} T_{F}\right] \text {. (Nobel(prize 2004!) }
$$

For SU(3) with six quark flavors, $\Lambda_{f}=6, C_{A}=3, T_{F}=\frac{1}{2}$, so RHS is $\frac{-9 s^{3}}{16 \pi^{2}}\left(\frac{11}{3}(3)-\frac{4}{3}\left(\frac{1}{2}\right)(6)\right)=-\frac{79 s^{3}}{16 \pi^{2}}<0$, so gs decreases as μ increases. This is known as asymptotic freedom, and is why we can approximate quarks as weakly-interacting and use perturbative QFT at high energies, where $\alpha_{s} \approx 0.1$. (This is why ow r R-ratio approximation worked.)

