The strong interaction at low enemies
Let's go all the way buck to the QCD Lagrangian, considering on s the two lightest quarks. I quaring $Q E D$ and retting the quark masses to zee,

$$
L=-\frac{1}{4} G_{m v}^{a} G^{\mu v a}+i u_{L}^{+} \bar{\sigma}^{\mu} D_{\mu} u_{L}+i u_{R}^{+} \sigma^{-} D_{\mu} u_{R}+i d_{L}^{+} \bar{\sigma}^{-} D_{m} d_{L}+i d_{R}^{+} \sigma^{\mu} D_{m} d_{R}
$$

This is invariant under separate global left-and right-handed rotations:
$\binom{u_{L}}{d_{L}} \rightarrow q_{L}\binom{u_{L}}{d_{L}}$ and $\binom{u_{R}}{d_{R}} \rightarrow q_{R}\binom{u_{R}}{d_{R}}$ where $g_{L} \in \operatorname{Su}(2)_{L}$
and $q_{R} \rightarrow$ Su(2 $)_{R}$. Given the existace of $q \overline{9}$ mesons, one con guess this interaction is affective. What hoppers if the ground state of the universe has a condensate of $9 \bar{q}$ pairs? (This is analogous to Cooper pairs in a superconductor.)
Let's assure $\langle\bar{u} u\rangle=\langle\bar{d} d\rangle=V^{3}$ (remember $[u]=\frac{3}{2}$, so this operator has dimasion 3). This is Lorentz-invaiant, but it breaks the L and R symmetries: $\bar{u} u=u_{L}^{+} u_{R}+u_{R}^{+} u_{L}$, so $\langle\bar{u} u\rangle$ is not invariant unless $q_{L}=q_{R}$. This is ow first example of a spontaneously broken symmetry:

$$
\begin{aligned}
& \left.\mathrm{SU}_{(2)_{L}} \times \mathrm{SU}_{2}(2)_{R} \rightarrow \operatorname{SUC}_{2}\right)_{V} \\
& q_{2} \quad q_{R} \quad q_{2}=q_{R} \text { : this symmetry is called (strong) isospin }
\end{aligned}
$$

"Spontaneous" because the Lagrangian is invariant under the symmetry, but the ground state is not, We call $\langle\bar{u} u\rangle$ a vacuum expectation value (vel), which is an order parameter for the symmetry breaking.

Armed with the hypothesis of chiral symmetry breaking, we can understand the spectrum and interactions of light mesons without knowing a_{n}, thing about $Q C D$! This is an extremely powetul tool, which will serve as a warmup for a similar effect at high energies, the Higgs mechanism.

To see how to arrange for chiral symmetry breaking, let's first 2 consider a simpler toy example with a complex scalar \varnothing and a spontarooust,-6roken abelian surety. Consider the following Lagrangian:
$\mathcal{L}=\partial_{\mu} \phi^{\theta} \partial^{n} \phi+n^{2} \phi^{\theta} \phi-\frac{\lambda}{4}\left(\phi^{\theta} \phi\right)^{2}$, which is invariant under $\phi \rightarrow e^{i \alpha} \phi$.
This looks just like the scalar Lagrangian use considered mach earlier in the courses but the mass term has the wrong sign! If we write $\alpha=T-V$, the quadratic and quartic terns are like a potential energy, which we can plot as a function of $\operatorname{Re}(\phi)$ and $\operatorname{Im}(\phi)$:

(I'm bud at 30 renderings.) What this is meant to show is that $\phi=0$ is an unstable maximum of the potential. All Feynman diagrams we have computed thus far are an expansion around zero field values, so to fix this, we seed to find the true minimum of the potential, Which will describe the ground state of the theory.
But which ground state? The potential is a function only of $\mid p 1$. $V(x)=-m^{2} x^{2}+\frac{\lambda}{4} x^{4}$, where $x=|\phi|$. Find minimum by $V^{\prime}=0, V^{\prime \prime}>0$: $V^{\prime}(x)=-2 m^{2} x+\lambda x^{3}=x\left(-2 m^{2}+\lambda x^{2}\right) . \quad x=0$ is unstable maximum, so
Solve $-2 m^{2}+\lambda x_{0}^{2}=0 \Rightarrow x_{0}=\sqrt{\frac{2 m^{2}}{\lambda}}$ (take positive value since $|0|>0$).
Check: $v^{\prime \prime}(x)=-2 m^{2}+3 \lambda x^{2}, v^{\prime \prime}\left(x_{0}\right)=-2 m^{2}+3 \lambda\left(\frac{2 m^{2}}{\lambda}\right)=4 m^{2}>0$ (as long as $\lambda>0$ so x_{0} is real)

Conclusion: there is a continuous family of minima,
$\psi_{0}=\sqrt{\frac{2 m^{2}}{\lambda}} e^{i \theta}$, parameterized by θ. The theory has to pick one:
by selecting a particular value of the angle along the circle, we are spontaneously breaking the U(1) rotation symmetry of the Lagrangian. Without loss of generality, define ψ such that the minimum is at $\theta=0$, and rewrite ϕ as
$\phi(x)=\left(x_{0}+\sigma(x)\right) e^{i \pi(x)}$, where $\sigma(x)$ and $\pi(x)$ are real. In other nods, we are just writing $\phi=r e^{i \theta}$ in polar coordinates, and shifting the radial coordinate such that the ground state configuration has $\sigma(x)=\pi(x)=0$. By rewriting the Lagrangian in terms of σ and π, we can go back to using Feynman rules and forget about any complications from the wrong-sign rags term. We will see this again next lecture.

Bacte to $\operatorname{su}(2)_{L} \times \operatorname{su}(2)_{R}$. Now we wart to break a non-abelion global symmetry to a subgroup: to do this, we will need a matrix-valued scalar field which transforms under sur) $\times \operatorname{suc}(2)_{R}$. Let's take a 2×2 matron field $\Sigma(x)$ transforming, as $\Sigma(x) \rightarrow q_{L} \sum(x) g_{R}^{+}$ land $\Sigma^{+} \rightarrow g_{R} \Sigma^{+} q_{2}^{+}$) to play the cole of ϕ above. Let's follow our noses and generation the previous lagrangian to matrices.

$$
\alpha=\operatorname{Tr}\left(\partial_{m} \Sigma^{+} \partial^{n} \varepsilon\right)+n^{2} \operatorname{Tr}\left(\varepsilon^{+} \varepsilon\right)-\frac{\lambda}{4}\left(\operatorname{Tr}\left(\varepsilon^{+} \varepsilon\right)\right)^{2}
$$

Can show (oH) that this Lagrangian is invariant under $\left.S U\left(C_{2}\right)_{L} \times S U C_{2}\right)_{R}$, but the ground state is $\sum_{0}=\frac{\Sigma}{\sqrt{2}}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ with $V=\frac{2 m}{\sqrt{\lambda}}$.
This grounds state is not invariant under the full symmetry, since $q_{L} \Sigma_{0} g_{R}^{+}=\frac{v}{\sqrt{2}} g_{L} q_{R}^{+}$, but it is invariant if use take $q_{L}=g_{R}$, Since q_{L} and p_{R} are witary matrices. Thus, this Lagrangian spontaneously breaks $\operatorname{su}(2)_{L} \times \operatorname{SU}(2)_{R}$ to the subgroup SU(2) with $g_{L}=g_{R}$, as desired.

As before, we con recurite Σ in "polar coordinates":
$\sum(x)=\frac{v+\sigma(x)}{\sqrt{2}} \exp \left(2 i \frac{\pi^{a}(x) \tau^{a}}{v}\right)$, where $\sigma(x)$ and $\pi^{a}(x)$ are real scabs, and $\tau^{a}=\frac{\sigma^{a}}{2}$. This reduces to Σ_{0} when $\sigma=\pi=0$, but it is not the most geneal 2×2 complex matrix, Instead, we want Σ to parameterize the space of possible vacua, which is $\frac{v}{\sqrt{2}} g_{L} q_{R}^{+}$, i.e. a real constant times an $s u(2)$ matrix. We will actually go one step further: we will decouple o by taking $n \rightarrow \infty, \lambda \rightarrow \infty$ with v fixed. This means it costs infinite potential every to charge σ, so it is "pined" at a constant value. The remaining degrees of freedom can be written as $U(x) \equiv \frac{\sqrt{2}}{v} \sum(x)=\exp \left(2 ; \frac{\pi^{n}(x) \tau^{a}}{F_{\pi}}\right)$. This is a unitary matrix, satisfying $U^{+} U=\mathbb{1}$, and transforming as $U \rightarrow g_{L} U_{q_{R}}{ }^{+} . F_{\pi}$ is a constant with dimensions of mas. In this normalization, $\langle U\rangle=\mathbb{1}$ which is invariant under $g_{2}=g_{R}$, so U parameterize the $\operatorname{su}(2)_{L} \times \operatorname{su}(2)_{R}$ breaking while throwing away all the information we do 't know about later all, we have no idea whether the Lagransion we started with resembles the QCD Lagragion at low energies).
Upshot: we want to write the most geneal Lagrangian for U, invariant under $S U(2)_{L} \times S U(2)_{R} . U^{+} U=\mathbb{I}$, a constant term, so this won't contribute to the equations of notion: we need derivatives. Lorentz invariance requires at least two derivatives, and must have an equal number of U and u^{t} :

$$
\begin{aligned}
\mathcal{L}=\frac{F_{\pi}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} u \partial^{\mu} u^{+}\right)+\theta\left(\partial^{4}\right) \leftarrow & \text { this is the chiral Lagrasion } \\
& \text { to lowest oder in derivatives }
\end{aligned}
$$

That was a lot of formalism: now to physics.
Let $\pi^{0}=\pi^{3}, \pi^{ \pm}=\frac{1}{\sqrt{2}}\left(\pi^{\prime} \pm i \pi^{2}\right)$ (π^{0} is real, π^{+}and π^{-}are complex conjugates)

$$
U=\exp \left[\frac{i}{F_{\pi}}\left(\begin{array}{cc}
\pi^{0} & \sqrt{2} \pi^{-} \\
\sqrt{2} \pi^{+} & -\pi^{0}
\end{array}\right)\right]
$$

We will interpret the chiral Lagrangian as a theory of pions. Note that there are no quarks or glues anywlec to be found! This is the "charge of variables" that lets us understand QCD when is gets large.

Some important predictions of chiral symmetry breaking:

- There are 3 (almost) massless pias. Every tern has derivatives, so there is no term like $m^{2} \pi^{2}$. This is an example of Goldstone; Theorem: a spontaneously broken continuous global symmetry implies massless particles. We will explain te nonzero observed pion masses short ξ, but already this motivates why $m_{\pi}=130 \mathrm{meV} \ll m_{p}=1 \mathrm{GeV}$: pions are Goldstone bosons of the spontaneously broken Chiral Symmetry of reassess $Q C D$. If also explains why there are 3 pions, corresponding to the 3 gereators of the broken suc2).
- Pion interactions are highly constrained. The Lagrassion is an infinite series in powers of π. The coefficient $\frac{F_{\pi}^{2}}{4}$ ensues the usual normalization for scalar kinetic terms:.

$$
\frac{F_{n}^{2}}{4} \operatorname{Tr}\left(\partial_{\mu} u \partial^{\mu} u^{+}\right)=\frac{1}{2}\left(\partial_{\mu} \pi^{0}\right)\left(\partial^{2} \pi^{0}\right)+\partial_{\mu} \pi^{+} \partial^{r} \pi^{-}+\ldots \quad \text { (BHW) }
$$

But there is also an infinite series of two-denvative interactions.

$$
\frac{1}{F_{\pi}^{2}}\left(-\frac{1}{3} \pi^{0} \pi^{0} \partial_{\mu} \pi^{+} \partial^{\mu} \pi^{-}+\ldots\right)+\frac{1}{F_{\pi}^{4}}\left(\frac{1}{18}\left(\pi^{+} \pi^{-}\right)^{2} \partial_{\mu} \pi^{n} \pi^{0}+\cdots\right)+\theta\left(\frac{1}{F_{\pi}^{6}}\right)
$$

all of these coefficients are completely fixed in terns of one parameter F_{π}. We will show in a couple weeks how to determine F_{π} from the π^{+}lifetime. This rears that $\sigma\left(\pi^{+} \pi^{-} \rightarrow \pi^{\circ} \pi^{\circ}\right)$ is completely determined once the π^{+}lifetime is measured. Note that thee are no odd pomes of π : 10 3-point vertex even though this is Lorentz invariant, conserves charge, etc.
-The pion mass is proportional to square roots of the quark masses.
We can introduce up and down quark masses as
$\alpha_{n}=\bar{q} M_{q}$ with $M=\binom{m_{n}}{m_{d}}$ and $q=\binom{u}{d}$. Clearly, this term breaks chiral symmetry, but we con still use it to unite a chirally-
invariant Lagrangian by letting M be a constant field with te same transformation properties as $U: M \rightarrow g_{L} M_{g_{R}}{ }^{+}$.
This trick is called spurion analysis, because M is not a real fired ("spurious"). A nice amoy is win lorentz symmetry breaking: if we want eng, the x direction to be a preferred direction in spacetime, we couch embed it in a vector $v^{n}=(0,1,0,0)$, and unite a lorentz-invariant lagrangian life $\partial_{\mu} \phi V^{m}$, even though v^{n} does not actually trans form.

$$
\begin{aligned}
& \Rightarrow \varsigma_{m}^{\prime}=\frac{v^{3}}{2} \operatorname{Tr}\left(M^{+} u+M u^{+}\right)
\end{aligned}
$$

The coefficient $\frac{V^{3}}{2}$ is fixed by $\langle\bar{u} u\rangle=\langle\bar{d} d\rangle=v^{3}$, so the vacuum energies in L_{m} and L_{m}^{\prime} are equal. We then have $n_{\pi^{0}}^{2}=n_{\pi^{ \pm}}^{2}=\frac{V^{3}}{F_{\pi^{2}}}\left(m_{n}+n_{d}\right)$. So approximate equali't of charged and neutral pion masses is not a result of $m_{n}=m \lambda$, but rather $m_{n}+m_{d} \ll V$. Lattice QCD Calculations confirm this relationship

- We can generalize SU(2) \rightarrow SU(3) to include the strange quark, but at the cost of sore accuracy since m_{3} is of the some oder as V. But we expect 8 light mesons, which we identify as $\pi^{0}, \pi^{ \pm}, K^{0}, \bar{K}^{0}, K^{ \pm}$, and η, whose interactions are constrained b_{y} approximate su(3) flavor symmetry.

The chiral Lagrangian is an example of an effective field theory, containing fums of dimension 6 and higher. We will see more examples like this in the last weeks of the course

