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Recipe for constructing amplitudes in QFT using a perturbative
expansion in e (full justification for this in QFT class)

vertex : i × coefficient = - Ier
"

•
(same factor for all

fermions w/charge - 1)

Extend vectors
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VIP ) for outgoing et •←
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Dirac equation is $- m ) 4=0, so fermion propagate
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This (strictly speaking) doesn't make sense because we areis ¥m
dividing by a matrix, but

we can manipulate it a bit using the

defining relationship of the V matrices
,
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⇒ p = i(pm, ( a- & matrix in spinor space )
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Let 's construct The Feynman diagram fo- the lowest- o-de
↳
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several things to note :

• terms in brackets are Lorentz 4-vectors
,
but all Spino- indices have been

contracted
.
Mnemonic : work backwards along fermion arrows

.

• Momentum conservation enforced at each vertex : p, + p, flows
into photon propagator, and this is equal to p, + pp

• The final answer is a number which we call IM ( i is conventional )
.-
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Recipe for computing cross sections ?

• Write down all Feynman diagrams at a given order in coupling e

. Choose spins for external States
,
evaluate IMT

" Integrate over phase space to get o, or integrate ore-

part of phase space to get a differential cross section ÷
,

,

which gives a distribution in the variable Cs) x
.
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In particular, we want to understand
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wwe een

doom
is the angle between the outgoing n
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and the incoming e- in the

center of momentum frame where f. tpa -- O.



Evaluating the matrix element 43
-

in -- ( Elm tiemus.cm)fj÷Casini tier) vs.cm]
First, need to specify spins. We will assume the initial e

-

and et

beans are inpolarized so we will average over initial spins.- -

Also assume detectors are blind to particle spins, so gun over
final

spina . Later we
will see what happens with polarized cross Teat. -ons.

Summing o-e- spins actually simplifies the computation . Square first :
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Focus on this term first
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brackets are (restoring spin. - indices )
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Now average over s
,

and Sz . Once we write the indices explicitly
,
we can rearrange

terms at will :

§
,

heinous, lp.lv = (Pl
,
the)
ar

y
remember

, p ,
and pie refer to

{ Valido Tsuda
-

- (ph - me ),
electronlpositro - momenta

,
so

mass is me

⇒ LE Tilman, us , help uiqlpirrervsdrulr -- thx -neloarmhxtnelm.ro
r w

- -

air✓
=

'

air -new trek)



This might not look like much of an improvement, but there are

a number of very useful
identities involving traces of ✓ matrices ?

Tr ( odd # of Vs ) = 0

Tr ( VV ) -- tryin

Trlrnrvr 'r7= only"y
"
- z "y~+y~y

" )

Using tie first identity
, only two tens survive :

Trl -mirin )= -4min
"

Trlplrmpxr ' ) = 9( pipp - (ping
"

+ pipi)

Notice that all the V matrices have disappeared ! We now have a pure Lorentz

tensor. Analogous manipulation on the muon terms with pg and pig give:

( 1m15 -= ¥2 1Mt =& (pipfi-pfpi-lpirrtmi.ly" ) / p, - P.ptpypq-lpipi-milzfsi.sns.seCprPÑ
fear
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Let's imagine a collide like LEP at CERN where F- = 100 Gev >> me
, man .

All the dot products are OCEZ)
,
so we can drop the mass terms for simplicity;

( 1m15 =
8e&

Fpga ((pips)(pipr) + (Pipra) (pips ))
This is a Lorentz- invariant n⇒.

Now
, specify a reference Frane :
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90 Pip , = ( 1- cos G)
,
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( 1m12) = ( ( It cosof + ( 1-coset ) = |e&(l+co5 Wh> so simple after all that work?
angular momentum conservation



Final step : integrate over phase space to obtain D= .

↳
does 0

Last week we saw that 2-body phase space took a

particularly simple form :
f always unity since we took E3> mm .

d The ÷,dr
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relativistic beans

d r = d ¢ dcoso, ¢ dependence
is trivial so integrating gives 2T,

⇒ do = ten e-( 1h05G) dust
3. LIT

÷i÷ we-ex -- E.

Two sharp predictions
'

.
cross section depends on cm energy as et ,

and angular distribution
of muons is It050 . Both borne out by experiment!

Can also integrate over E to get total cross section :

o -

- f adf.TO dust = TIE !
'

,

child = 4
3 E
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Fo- known E
,
can use this to measure x

.


