Feynman rules

interaction tens: Quadratic terms: vertices external lines

Recipe for constructing amplitudes in QFT using a perturbative expansion in C (Full justification for (Fis in QFT class) Vertex: i × coefficient = -iCY^m . (same factor for all fermions w/charge -1) External vectors: E_x(p) for ingoing E^m_n(p) for outgoing External fermions: U^s(p) for infoming e⁻ .

$$\overline{u}^{s}(p)$$
 for outgoing e^{+} ... Note reversal
 $\overline{v}^{s}(p)$ for incoming e^{+} ... Note reversal
 $\overline{v}^{s}(p)$ for outgoing e^{+} ... OF arrows!

Internal lines: "reciprocal of quadratic term" plus some factors of i For formions, Dirac equation is $(p-m)\Psi = 0$, so formion propagatoris $\frac{1}{p-m}$ ". This (stricty speaking) doesn't make same because we are dividing by a matrix, but we can manipulate it a bit using the defining relationship of the Y matrices $\{Y^n, Y^n\} \equiv Y^nY^n + Y^nY^n = 2\eta^{nn}$ Note $(p+m)(p-n) = pp - m^n = \frac{1}{2}(p_n p_n Y^nY^n + p_n p_n Y^nY^n) - m^n = p^n - m^n$ $= \frac{1}{p^n-m} = \frac{1}{p^n-m^n} (4x4 matrix in spinor space)$ Similarly for vectors, $\Box A_n = 0 = propagator is <math>\frac{m-1}{\Box}^n = -\frac{1}{p^n}\eta_n y$ Let's construct the Feynman diagram for the lowest-order L contribution to $e^+e^- \rightarrow \mu^+\mu^-$

Several things to note;

- · terms in brackets are Lorentz 4-vectors, but all spins indices have been Contracted. Mnemonic: work backwords along Fermion arrows.
- · Momentum conservation enforced at each vertex : fit for Flows into photon propagator, and this is equal to for the
- . The Final answer is a number, which we call if (i is convertional).

Recipe for computing cross sections.

- . Write down all Feynman diagrams at a given order in Confling e . Choose spins for external states, evaluate [M]²
- The part of phase space to get σ , or integrate over part of phase space to get a differential cross section $\frac{d\sigma}{dx}$, which gives a distribution in the variable(s) x.

In particular, we want to indestand $\frac{d\sigma_{erc} \rightarrow ntn}{d\theta_{cm}}$, where θ_{cm} is the angle between the outgoing in and the incoming e^{-} in the center of momentum frame where $\tilde{p}_{1} + \tilde{p}_{2} = 0$.

$$\begin{split} & \overline{\left[\begin{array}{c} \overline{V} \left[V_{1} \left[V_{1}$$

Now average over 5, and 52. Once we write the indices explicitly, we can rearrange terms at will.

This right not look like much of an improvement, but here are
$$\left[\frac{4}{\alpha}\right]$$

a number of very useful identifies involving traces of V metrices:
Tr (old " of Vs) = D
Tr (V^V) = 4 $\frac{1}{2}\pi^{VV}$
Tr (V, V'V) = - $4\pi^{V}$
Notice bet all Ne V metrices have disappeared. We now have a pure backet
tensor. Analogous manifulation on the runs terms with β and β provide
(NI) = $\frac{1}{4}\sum_{i=1}^{V} \frac{1}{2}\pi^{V}$
($1/2\pi^{V}$) = $4\pi^{V}$
($1/2\pi^{V}$) = $4\pi^{V}$

Final step: integrate over phase space to obtain
$$\frac{d\sigma}{dcos\theta}$$
.
Last week we saw that 2-body phase space took a
particularly simple form:
 $d \Pi_{2} = \frac{1}{16\pi^{2}} d\Omega - \frac{1Pe^{1}}{E_{cn}} \Theta (E_{cn} - m_{3} - m_{4})$
 $A\sigma = \frac{1}{(2E_{c})(2E_{c})h_{1}\cdot v_{2}|}$
 $E_{i}=E_{1}-E_{1}N = \frac{1}{2}$ for
relativistic berns

$$d \Omega = d \varphi d \cos \theta, \varphi d equalence is trivial so integrating pixes 2 \pi$$

$$= > d\sigma = \frac{1}{32\pi E^{2}} e^{*}(1r\cos^{2}\theta) d\cos\theta$$

$$\boxed{\frac{d\sigma}{d\cos\theta} = \frac{e^{*}}{32\pi E^{2}}(1+\cos^{2}\theta) = \frac{\pi \alpha^{2}}{2E^{*}}(1+\cos^{2}\theta)} \quad \text{where } \alpha = \frac{e^{2}}{4\pi}$$

$$Two sharp predictions, cross section depends on CM energy as $\frac{1}{E^{*}}$,
and angular distribution of muons is $1+\cos^{*}\theta$. Both borne out by experiment!$$