P and $C P$ violation
The weak interaction is special for two reasons:

- The interaction of the W and 2 bosons treat ceft-and righthared fermions differently, which violates parity symmetry P.
- The CKM matrix is complex instead of real, which violates a combination of charge conjugation symmetry and parity Symmetry called CP.
We will first define how P and $C P$ transformations act on fields, and then examine the phenomenological consequences of the violation of these symmetries by the weak interactions.

Parity temsformations
As we briefly discussed nay weeks ago, $p:(t, \vec{x}) \rightarrow(t,-\vec{x})$ implements spatial inversions and has a representation on 4 -vectors as

$$
P=\left(\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right) \text {. Note that this matrix has } \operatorname{det}=-1 \text {, so it is }
$$

not an element of $\operatorname{so}(3,1)$, fut rather $O(3,1)$. Because of this, Lorentz-invaiant equations of notion do not guarantee invariance under P. However, theories of free bosonic fields (scalars and rectors) are invariant under P (see Schuartz see. 11.5). Since $P^{2}=1$, it has eigenwabes士1. Spin-0 particles with $P=+1$ are called scalars, and those with $P=-1$ are called psecudoscalcors. For example, $P\left|\pi^{\circ}\right\rangle=-\left|\pi^{\circ}\right\rangle$, so the pion is a psendoscalar. If the Lagrangian of a theory is invariant under P, then parity is a multiplicative quantion number: De product of the parities, of the initial states equals the product of the parities of the final states.
Similarly, for spin -1:, $P\left|V_{0}(t, \vec{x})\right\rangle= \pm\left|V_{0}(t,-\vec{x})\right\rangle, \quad P\left|V_{i}(t, \vec{x})\right\rangle=\mp\left|V_{i}(t,-\vec{x})\right\rangle$. The parity is determined 6 the eigenvalue of the spatial componat: gauge fields must transform like ∂_{n}, so $A_{i} \rightarrow-A_{i}$ and A_{n} hat $P=-1$.
(spin-1 particles with $\rho=+1$ are called psendovectors or axial vector)
For fermions, we sow in ow discussion of the Lorentz group that P exchanges L and R spinors. In 4 component notation,

$$
P^{\prime}, \psi \rightarrow \gamma^{0} \psi
$$

Therefore, we can compute (Suppressing the spacetime argmat)

ρ^{0} : $\bar{\psi} \gamma^{\mu} \psi \xrightarrow{\psi} \psi^{+} \gamma^{0}{\underset{\sim}{c}}_{0}^{0} \gamma^{\mu} \gamma^{0} \psi=\bar{\psi}\left(\gamma^{\mu}\right)^{+} \psi$
Since $\left(r^{0}\right)^{+}=r^{0}$ and $\left(r^{i}\right)^{r}=-r^{i}$, the time and space component is of this Combination of spines transforms just like a vector with $\rho=-1$.
Therefore,
$P: \bar{\psi} \notin \psi \rightarrow \bar{\psi} A \psi$ since spatial components are $(-1)(-1)=+1$ add time components are $(+1)(+1)=+1$.
However, inserting a r^{5} charges the signs:
$p: \bar{\psi} \notin r^{5} \psi \rightarrow-\bar{\psi} \notin r^{5} \psi$. (for 2 couplings, this term was what we called c_{A})
A Lagrangian that mixes γ^{n} with $\gamma^{n} \gamma^{s}$ (like the weak interaction!) is not symmetric under parity.
Example: polarization in w decay

$$
W \rightarrow e^{+} v_{e}
$$

Ignoring constants: $M \propto \bar{u}\left(\rho_{2}\right) \gamma^{\mu}\left(\frac{1-r^{s}}{2}\right) v\left(p_{1}\right) \epsilon_{\mu}\left(p_{w}\right)$
Say w is initially, at rest: $p_{w}=\left(m_{w}, 0,0,0\right)$. Then 3 line-ly inteperet polvization vectors are $\epsilon_{r}^{x}=(0,1,0,0), \epsilon_{\mu}^{y}=(0,0,1,0), \epsilon_{m}^{2}=(0,0,0,1)$. These satisfy $\epsilon^{(i)} \cdot \epsilon^{(j)}=-\delta^{i j}, t^{(i)} \cdot p_{w}=0$.

Define 2 -axis as direction of outgoing neutrino. In limit of massless neutrinos, neutrino is always left-hanled: spin opposite direction of motion, and only top two components of 4 component spinor are senzer. For neutrino enemy $E_{v}, u\left(p_{2}\right)=\sqrt{2 E_{v}}\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right)$ (recall there is a very bad
typo in Schuatz eq. (11.26)! see errata on Schwartz book website.) The $\binom{0}{1}$ in the upper tho components specifies spin down along z axis.
Positron moves in -2 direction to conserve momentum. Positron spinous can be $V^{\prime}\left(p_{1}\right)=\left(\begin{array}{c}\sqrt{E_{2}-p_{2 e}} \\ -\sqrt{E_{e}+p_{2 c}} \\ 0\end{array}\right)$ or $V^{(2}\left(p_{1}\right)=\left(\begin{array}{c}0 \\ \sqrt{E_{e}+p_{2 c}} \\ 0 \\ -\sqrt{E_{e}-p_{p_{e}}}\end{array}\right)$. Recall $v^{(1)}$ represents a spin-down position while $v^{(2)}$ represents a spin-up positron.
Let's compute the squared amplitude for Compute M for each W polarization, square, and average.

$$
\begin{aligned}
& v^{(2)}\left(P_{1}\right)=0 .
\end{aligned}
$$

Similarly, $\left.M_{y}^{\uparrow}=\sqrt{2 E_{v}} \sqrt{E_{e}+p_{2 e}}(-101) \sigma^{2},(00)\right)\left(\begin{array}{l}\left(\begin{array}{l}0 \\ 1 \\ (0 \\ 0\end{array}\right)\end{array}\right)=0$.

$$
\begin{aligned}
& M_{2}^{\uparrow}=\sqrt{2 E_{1}} \sqrt{E_{e}+P_{2 e}}\left(\begin{array}{llll}
-(0 & 1
\end{array}\right) \sigma^{3},\left(\begin{array}{lll}
0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0
\end{array}\right)=\sqrt{2 E_{v}} \sqrt{E_{e}+P_{2 c}} \\
& \Rightarrow \frac{1}{3}\left(\left|M_{x}^{\hat{q}}\right|^{2}+\left|\mu_{y}^{\dagger}\right|^{2}+\left|\mu_{z}^{\hat{2}}\right|^{2}\right) \propto E_{v}\left(E_{e}+p_{2 e}\right) \text {. }
\end{aligned}
$$

Interpretation: positron spin is an EPR-like measurement of W spin. Along neutrino axis, W could have had spin $-1,0$, or 1: only spin-o has a nonvanishing amplitude, consistent with angular rometum conservation. (Recall $\epsilon^{x} \pm i \epsilon^{y}$ have eigaralues ± 1 under J_{z}, ϵ^{z} has eigaralee 0)

Momentum conservation: $p_{2 e}=-E_{v}$. To find $E_{1}, \quad p_{w}=p_{1}+p_{2}=\left(p_{w}-p_{2}\right)^{2}=p_{1}^{2}$,
So $m_{w}{ }^{2}-2 m_{w} E_{v}=m_{e}^{2}$, and $E_{v}=\frac{m_{w}{ }^{2}-m_{e}^{2}}{2 m_{w}} . \quad E_{e}=m_{w}-E_{v}=\frac{m_{u}^{2}+m_{e}^{2}}{2 m_{w}}$

$$
E_{v}\left(E_{e}+p_{2 e}\right)=\left(\frac{m_{w}^{2}-m_{e}^{2}}{2 m_{w}}\right)\left(\frac{m_{w}^{2}+m_{e}^{2}}{2 m_{w}}-\frac{m_{w}^{2}-m_{e}^{2}}{2 m_{w}}\right) \approx \frac{m_{w}}{2} \frac{m_{e}^{2}}{m_{w}^{2}}
$$

Note that this vanishes in limit me $\rightarrow 0$! If we repeated the calculation for the other position spin, we would find $\left.\left.\langle | M^{\downarrow}\right|^{2}\right\rangle \propto \frac{m_{w}}{2} \times \theta(1)$.
So the relative probability of positron having spin aligned w/direction of notion is $m_{w}{ }^{2} / m_{e}{ }^{2} \sim 10^{101}$. Could use this to give an unambiguous definition of "left." The me penalty is known as helicity suppression and we will see it again next lecture. CP (transformations
Another discrete symmetry operation is charge conjugation, denoted C. Roughly speaking, it takes a spinrup electron to a spin-down position."
C: $\psi \rightarrow-i \gamma_{2} \psi^{3}$
Under $C, \bar{\psi} \psi \rightarrow \bar{\psi} \psi$ and $\bar{\psi} \nsim \psi \rightarrow \bar{\psi} \psi \psi$ (See Schwartz 11.4), So free Dirac Lagrangian is invariant under charge conguquation. For gauge interactions, $\bar{\psi} \gamma^{\mu} \psi \rightarrow-\bar{\psi} \gamma^{\mu} \psi$, so if we define $C^{:} A_{\mu} \rightarrow-A_{n}$, then $\bar{\psi} \not O \psi$ is invariant. This is a bit weird since A is real, but note that $C^{2}=1$, so A_{μ} is still an eigenstate of C, just with eigenvalue -1 . We can also combine C and P to see under what conditions the SM Lagrangian is invariant under the combined transformation. Can show the following transformation properties under $C P$.

$$
\begin{array}{ll}
\bar{\psi}_{i} \psi_{j}(t, \vec{x}) \rightarrow+\bar{\psi}_{j} \psi_{i}(t,-\vec{x}) & \bar{\psi}_{i} \gamma^{5} \psi_{j}(t, \vec{x}) \rightarrow-\bar{\psi}_{j} \gamma^{5} \psi_{i}(t,-\vec{x}) \\
\bar{\psi}_{i} \not \not A \psi_{j}(t, \vec{x}) \rightarrow+\bar{\psi}_{j} \not A \psi_{i}(t,-\vec{x}) & \bar{\psi}_{i} \not \not A \gamma^{5} \psi_{j}(t, \vec{x}) \rightarrow \bar{\psi}_{j} \not \not A \gamma^{5} \psi_{i}(t,-\vec{x})
\end{array}
$$

where $A=A, w, 2$ is any vector field.
Consider the part of the SM Lagrargim containing the W.

$$
\mathcal{L}_{w}=\frac{e}{\sqrt{2} \sin \theta_{w}}\left[\bar{u}_{i} V_{i j} W^{+}\left(\frac{1-r^{5}}{2}\right) d_{j}+\bar{d}_{i} V_{i j}^{+} \mathscr{W}^{-}\left(\frac{1-r^{5}}{2}\right) u_{j}\right]
$$

under C, complex fields transform to their conjugates, so C takes w^{+}to w^{-}. By the above, all the fermions transform by changing order but not sign, so

$$
\alpha_{w} \xrightarrow{C P} \frac{e}{\sqrt{2} \sin \theta_{w}}\left[\bar{d}_{j} V_{i j} W^{-}\left(\frac{1-\gamma^{s}}{2}\right) u_{i}+\bar{u}_{j} V_{i j}^{+} W^{+}\left(\frac{1-\gamma^{s}}{2}\right) d_{i}\right]
$$

In matrix form, $\bar{u} V\left(\frac{1-r^{5}}{L}\right) d \rightarrow \bar{u}\left(V^{\top}\right)^{+}\left(\frac{1-r^{s}}{2}\right) d=\bar{u} V^{p}\left(\frac{1-r^{s}}{2}\right) d$.
So if $V=V^{\text {s }}$, ie, if all CKM elements are real, $C P$ is conserved.
However, as discussed last week, V has one complex phase, which is known (as you now can see) as a CP-violatily phase.
This is not a basis-independent statement since we can always redefine the quark fields with phase rotations that leave the mas matrix invariant, but determinants are basis-independent:
$\operatorname{det}\left[y_{n}, y_{d}\right]=-\frac{16}{V^{6}}\left(m_{t}-m_{c}\right)\left(m_{t}-m_{n}\right)\left(m_{c}-m_{n}\right)\left(m_{b}-m_{s}\right)\left(m_{b}-n_{l}\right)\left(m_{c}-n_{l}\right) J$,
where J is the Jarlskon invariant $J=\sin \theta_{12} \sin \theta_{21} \sin \theta_{1} \cos \theta_{12} \cos \theta_{23} \cos \theta_{\theta_{1}}^{2} \sin \delta$ J vanishes if and only, if tee CP-violatiry phase $\delta=0$.
$C P$ violation and $K \bar{K}$ mixing
Let's look at some observable consequences of $C P$ violation. The lightest mesons containing strange quarks are the neutral kaons $K^{\circ}=\bar{s} d$ and $\bar{K}^{\circ}=\bar{d} s . P$ is conserved in the strong interactions, So the parity of the kaon can be determined from its production: $P\left|k^{0}\right\rangle=-\left|k^{0}\right\rangle, P\left|\bar{k}^{0}\right\rangle=-\left|\bar{k}^{0}\right\rangle$. Cexcharges particles and antiparticles, So $\left(k^{0}\right\rangle=\left|\overline{k^{0}}\right\rangle$ and $\left\langle\mid \overline{k^{0}}\right\rangle=\left|k^{\circ}\right\rangle$
\Rightarrow the $C P$ eipenstates are linear combinations:

$$
\begin{array}{cc}
K_{1}=\frac{1}{\sqrt{2}}\left(k^{0}+\bar{k}^{0}\right), & K_{2}=\frac{1}{\sqrt{2}}\left(k^{0}-\bar{k}^{0}\right) \\
C P=-1 & C P=+1
\end{array}
$$

The pions $\pi^{0}, \pi^{ \pm}$have $P=-1$. So a neutral state with tho pions ($\pi^{0} \pi^{0}$, or $\pi^{+} \pi^{-}$) has $C P=+1$, and a state witt three pions $\left(\pi^{\circ} \pi^{0} \pi^{\circ}\right.$ or $\pi^{0} \pi^{+} \pi^{-}$) has $C P=-1$. If $(P$ were conserved in the Stardul Model, K_{1} should never decay to $\pi \pi$. Since $m_{k}=498 \mathrm{MeV}$ and $3 m_{\pi} \approx 405 \mathrm{meV}$, there is a strong phase space suppression for the 3π decay, as well as factors of $\frac{1}{4 \pi}$ from the additional $\frac{d^{3} p}{(2 \pi)^{3}}$.

